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  SUSY is a concept that adds additional symmetry to SM

  SUSY is key element in many Standard Model extensions 

  If SUSY realized around 1 TeV scale: 

 stabilize Higgs mass 

 gauge unification

 Dark Matter candidate

 SUSY has to be a broken symmetry

preferred energy threshold  
for new physics

SUPERSYMMETRY INTRODUCTION
fermions  
↔  

bosons

additional loops cancel  
quadratic divergencies

Lightest SUSY Particle (LSP) 
(if r-parity is conserved) 

parametrize SUSY breaking:  
124 parameters 

GUT
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mSUGRA/cMSSM 

• gauge coupling unification 

• unification of gaugino masses 

• universal scalar masses 

• universal triliniear coupling 

• 5 parameters: tan β, M1/2, M0, A0, sign(µ)

phenomenological MSSM (pMSSM) 

• no new source of CP-violation 

• no FCNC 

• 1st and 2nd generation universality 

• 19 parameters

simplified MSSM 

• effective models with minimal particle content 

• parametrized directly in terms of particle masses 

• complementary to pMSSM
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• signal signatures are manifold and there’s no ‘one size fits all’-analysis 

• however, analysis strategies are similar if not identical 

• define signal region based on 

•  full physics models   

•  generalised models 

•  simplified models

• signal topology then determines SM background 

•   search variables 

•   background determination

• don’t forget detector backgrounds

msugra, GMSB, AMSB

pmssm

minimal set of parameters
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1 lepton 2 leptons (ss)2 leptons (os) >2 leptons

Background controlrate

• SUSY can manifest itself in different lepton final states
• single lepton
• di-lepton opposite sign (on- and off-Z-peak)
• di-lepton same sign 

• (will not discuss all of them here)
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• attractive signature of potential new physics

• predicted by large range of BSM models

• high branching ratio

• here: gluino pair production with subsequent decays to top squarks 

12

• select events with one isolated lepton (e, µ, pT > 20 GeV)

• veto events with additional leptons (pT > 15 GeV)

• require at least 3 jets with pT > 40 GeV

• HT > 500 GeV

• backgrounds: ttbar, W + jets, single top, diboson,             
DY + jets

PLB 733 328 (2014)
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10 8 Interpretation of results for supersymmetric scenarios

Table 3: Observed numbers of events with exactly three leptons in comparison with the es-
timated numbers of SM background events. “On-Z” refers to events with an e+e� or µ+µ�

(OSSF) pair with dilepton mass between 75 and 105 GeV, while “Above-Z” and “Below-Z” re-
fer to events with an OSSF pair with mass above 105 GeV or below 75 GeV, respectively. The
OSSFn designation refers to the number of e+e� and µ+µ� pairs in the event, as explained in
the text. Search channels binned in Emiss

T have been combined into coarse Emiss
T bins for the

purposes of presentation. All uncertainties include both the statistical and systematic terms.
The channels marked with an asterisk are used for normalization purposes and are excluded
from the search.

3 leptons m�+�� Emiss
T N⇥h = 0, Nb = 0 N⇥h = 1, Nb = 0 N⇥h = 0, Nb ⇥ 1 N⇥h = 1, Nb ⇥ 1

HT > 200 GeV (GeV) Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp.
OSSF0 — (100, �) 5 3.7 ± 1.6 35 33 ± 14 1 5.5 ± 2.2 47 61 ± 30
OSSF0 — (50, 100) 3 3.5 ± 1.4 34 36 ± 16 8 7.7 ± 2.7 82 91 ± 46
OSSF0 — (0, 50) 4 2.1 ± 0.8 25 25 ± 10 1 3.6 ± 1.5 52 59 ± 29
OSSF1 Above-Z (100, �) 5 3.6 ± 1.2 2 10.0 ± 4.8 3 4.7 ± 1.6 19 22 ± 11
OSSF1 Below-Z (100, �) 7 9.7 ± 3.3 18 14.0 ± 6.4 8 9.1 ± 3.4 21 23 ± 11
OSSF1 On-Z (100, �) 39 61 ± 23 17 15.0 ± 4.9 9 14.0 ± 4.4 10 12.0 ± 5.8
OSSF1 Above-Z (50, 100) 4 5.0 ± 1.6 14 11.0 ± 5.2 6 6.8 ± 2.4 32 30 ± 15
OSSF1 Below-Z (50, 100) 10 11.0 ± 3.8 24 19.0 ± 6.4 10 9.9 ± 3.7 25 32 ± 16
OSSF1 On-Z (50, 100) 78 80 ± 32 70 50 ± 11 22 22.0 ± 6.3 36 24.0 ± 9.8
OSSF1 Above-Z (0, 50) 3 7.3 ± 2.0 41 33.0 ± 8.7 4 5.3 ± 1.5 15 23 ± 11
OSSF1 Below-Z (0, 50) 26 25.0 ± 6.8 110 86 ± 23 5 10.0 ± 2.5 24 26 ± 11
OSSF1 On-Z (0, 50) *135 130 ± 41 542 540 ± 160 31 32.0 ± 6.5 86 75 ± 19

3 leptons m�+�� Emiss
T N⇥h = 0, Nb = 0 N⇥h = 1, Nb = 0 N⇥h = 0, Nb ⇥ 1 N⇥h = 1, Nb ⇥ 1

HT < 200 GeV (GeV) Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp.
OSSF0 — (100, �) 7 11.0 ± 4.9 101 111 ± 54 13 10.0 ± 5.3 87 119 ± 61
OSSF0 — (50, 100) 35 38 ± 15 406 402 ± 152 29 26 ± 13 269 298 ± 151
OSSF0 — (0, 50) 53 51 ± 11 910 1035 ± 255 29 23 ± 10 237 240 ± 113
OSSF1 Above-Z (100, �) 18 13.0 ± 3.5 25 38 ± 18 10 6.5 ± 2.9 24 35 ± 18
OSSF1 Below-Z (100, �) 21 24 ± 9 41 50 ± 25 14 20 ± 10 42 54 ± 28
OSSF1 On-Z (100, �) 150 150 ± 26 39 48 ± 13 15 14.0 ± 4.8 19 23 ± 11
OSSF1 Above-Z (50, 100) 50 46.0 ± 9.7 169 140 ± 48 20 18 ± 8 85 93 ± 47
OSSF1 Below-Z (50, 100) 142 130 ± 27 353 360 ± 92 48 48 ± 23 140 133 ± 68
OSSF1 On-Z (50, 100) *773 780 ± 120 1276 1200 ± 310 56 47 ± 13 81 75 ± 32
OSSF1 Above-Z (0, 50) 178 200 ± 35 1676 1900 ± 540 17 18.0 ± 6.7 115 94 ± 42
OSSF1 Below-Z (0, 50) 510 560 ± 87 9939 9000 ± 2700 34 42 ± 11 226 228 ± 63
OSSF1 On-Z (0, 50) *3869 4100 ± 670 *50188 50000 ± 15000 *148 156 ± 24 906 925 ± 263

and Higgs bosons. The first three scenarios feature the gravitino as the LSP, while the lightest
neutralino ��0

1 is the LSP for the other two scenarios. The first and last two scenarios proceed
through the production of third-generation squarks, yielding final states rich in heavy-flavor
jets. Taken together, these five scenarios present a wide spectrum of multilepton signatures.

Our search results lack striking departures from the SM, and we set limits on the production
cross sections of the five scenarios. The limits are determined using the observed numbers of
events, the SM background estimates, and the predicted event yields. For each scenario, we
order the search channels by their expected sensitivities and then combine channels, starting
with the most sensitive one. For ease of computation and with a negligible loss in overall
sensitivity, we do not consider channels once the number of signal events integrated over the
retained channels reaches 90% of the total. The list of selected channels thus depends not
only on the scenario considered, but also on the assumed superpartner masses and branching
fractions.

We set 95% confidence level (CL) upper limits on the signal parameters and cross sections
using the modified frequentest CLs method with the LHC-style test statistic [51–53]. Lognormal
nuisance-parameter distributions are used to account for uncertainties.

3 lepton example

PRD 90, 032006 (2014)
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• model includes strong and weak production of 
squarks, gluinos , sleptons, gauginos 

• signal populates high MET and 3 and 4 lepton 
channels PRD 90, 032006 (2014)
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Searches Using MT2 
• 0 lepton final state

• search is binned in # of jets, # of b-jets, HT, MT2

• multi-bin likelihood fit to exclude signal models with 
squarks, gluinos, sbottoms, stops

very strong sbottom  limits

17
JHEP 05 (2015) 078
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3rd Generation Squark Production
• 0 lepton final state 

• 3 all-hadronic channels 

• large mass splitting stop 

• large mass splitting sbottom 

• compressed mass hierarchy 

• combine channels since fully 
independent

19

boosted tops, 
3 nearby jets

require ISr 
to tag event

arxiv 1503.08037
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Why haven’t we found SUSY?

• Nature is not supersymmetric

• SUSY masses/cross-section out of reach (for now)

• SUSY scenario is sitting in a niche

21

hard to verify

have to come up with 
new analysis ideas 

Wait for more 
data to roll in
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Where Could SUSY ‘Hide’?
• Is it possible that SUSY is hiding in plain sight?

• After all, we were applying very powerful analysis techniques…

• Despite being very sensitive our analyses have blind spots.

• Consider the following mass hierarchies:

22

regular compressed

LSP

LSP

consequences of compressed spectra:

• compressed spectra reduce visible energy

• loss of acceptance

• reconstruction might fail

• might not fire any triggers at all

=> requires dedicated analyses

excluded

NLSP

L
S
P our 

goal
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Compressed Scenario I
• signature: soft leptons, low jet multiplicity, MET

• low Δ∆M (<80GeV) leads to 4-body decay

• 3 decay channels (W decays) 

• 0 lepton: BR 55%, huge irreducible bkg Z -> vv, W -> lvmiss 

• 1 lepton: BR 38%, bkg from W -> lv 

• 2 lepton: BR 7%, we are working on this

• soft final state objects hard to trigger on 

• => require ISR jet(s)

23SUS-14-021
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Compressed Scenario I: Signal Selection
• MET > 200 GeV  driven by trigger turn-on

• pT (jet1) > 150 GeV  driven by trigger turn-on

• pT(jet3) < 60 GeV, mono-jet and di-jet events

• b-jet veto, signal b-jet: pT < 30 GeV

• Nlep = 2, Nµ > 0, opposite sign µµ, eµ channels

• pT(l1): [5(7), 25] GeV

• pT(l2): [5(7), 15] GeV

• |η| < 1.5, central, isolated leptons
24

• SR region: 8 events (simulation) 

• background composition

SUS-14-021
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low pT bin most sensitive relative syst. uncertainties
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Compressed Scenario I: Results

26

• no excess observed in either bin

• background prediction in good 
agreement with data

• => setting limits

• limits covering unexplored region!

SUS-14-021
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Compressed SUSY Scenario II
general idea: access compressed stau SUSY by tagging vector boson fusion (VBF) jets 

27

• VBF production (2 example diagrams shown) yields 2 high pT jets in opposite 
hemispheres of the detector with large separation in η

• search performed in opposite sign (os) and same sign (ss) µµ,eµ,µτh ,τhτh channels

SUS-14-005
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Compressed SUSY Scenario II: Background Estimation
• VBF topology not well-modelled in simulation 
• use data driven techniques (ABCD method with inversion of VBF requirements, lepton 

isolation, b-veto, requiring 3 leptons or a transverse mass window) 
• single-µ  or di-τh trigger 
• b-tag veto to reduce ttbar 
• 2 central isolated leptons 
• mass of VBF jets > 250 GeV, varying MET requirements

• backgrounds vary with os or ss and lepton flavour 

28os SsSUS-14-005
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Compressed SUSY Scenario II: Interpretation

• interpretation with light stau for compressed spectra and light LSP

29
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Compressed SUSY Scenario II: Interpretation

• interpretation with light stau for compressed spectra and light LSP
• especially ss channels have large signal to background ratios

29
SUS-14-005



500 1000 1500 2000 2500

Ev
en

ts
 / 

25
0 

G
eV

-310

-210

-110

1

10

210

310

410

510

610
data

Higgs

Diboson

DY+jets

W+jets
tt

 = 0 GeV)0
1

χ∼
 = 195 GeV, m

1τ
∼ = 200 GeV, m±

1
χ∼

=m0
2

χ∼
(m

jjχ∼χ∼ →pp 

CMS Preliminary  (8 TeV)-119.7 fb

 (Like charge)µµ

m(j,j) [GeV]
500 1000 1500 2000 2500O

bs
./P

re
di

ct
io

n

0
0.5

1
1.5

2
2.5

3

 [GeV]
2
0
χ∼

 = m
1
±χ∼

m
100 150 200 250 300 350 400

 [f
b]

σ

1

10

210

310
Observed

 = 50 GeV
1

0
χ∼

 - m
1
±χ∼

, mσ 1±Expected  

 = 0 GeV
1

0
χ∼

, mσ 1±Expected  

jj) (LO)χ∼χ∼ →(pp σ

CMS Preliminary  (8 TeV)-119.7 fb
 = 5 GeVτ∼ - m

1
±χ∼m

hτhτ, h
τµ, µ, eµµ

, τ τ∼ → 
2
0
χ∼ , τν τ∼ → 

1
±χ∼

Compressed SUSY Scenario II: Interpretation

• interpretation with light stau for compressed spectra and light LSP
• especially ss channels have large signal to background ratios
• results compatible with SM, limits have been set for compressed (green) and large mass gap 

(yellow) scenarios 
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Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV

ICHEP 2014

lspm⋅+(1-x)motherm⋅ = xintermediatem
For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit
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Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV

ICHEP 2014

lspm⋅+(1-x)motherm⋅ = xintermediatem
For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

• probing the 1 TeV mass scale 
• ‘classic’ SUSY scenarios in classic 

final states become less interesting  
• trying to close holes where SUSY 

might be hiding 
• there’s still a lot of work ahead!



SUSY Theory Phase Space

32



SUSY Theory Phase Space

32

Let’s not forget, SUSY is not 
just one theory. 
It’s rather a concept with a 
multitude of possible 
manifestations!



SUSY Theory Phase Space

32

cMSSM

Let’s not forget, SUSY is not 
just one theory. 
It’s rather a concept with a 
multitude of possible 
manifestations!



SUSY Theory Phase Space

32

SUSY N=1

NMSSM
MSSM

pMSSM

cMSSM

Let’s not forget, SUSY is not 
just one theory. 
It’s rather a concept with a 
multitude of possible 
manifestations!



SUSY Theory Phase Space

32

SUSY N=1

NMSSM
MSSM

pMSSM

cMSSM

Let’s not forget, SUSY is not 
just one theory. 
It’s rather a concept with a 
multitude of possible 
manifestations!

(see Matthias’ talk @2pm)
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•  Three years of LHC data taking brought huge amount of new SUSY results.
• No indication of supersymmetric partners of SM particles found.
• However, only small part of possible SUSY phase space has been explored.

• Standard scenarios are probably hard to sustain.
• But tests of more realistic (and more complicated) scenarios are on the way
•  ….and new analysis methods are investigated.

• We are all looking forward to what Run II might bring.   
• SUSY is still the best candidate for solving crucial SM shortcomings
•    ... and is far from being ruled out


