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Introduction

v' Cosmic rays (CR) are particles coming from galaxy or outside the galaxy reaching th
v' 90% protons, 9% He nuclei, 1% heavier nuclei

v’ Gammas , neutrinos

v' Rate ~ 1000 particles hits the atmosphere per m2s

CR are characterized by:
Identity of the particle
Energy (10° - 10%° gV)
All arrival directions




Cosmic ray showersp
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p,n, T = near the shower axis

M, €, Y =2 widely spread

e,y = from 0, y decays (10 MeV)
M =2 from 11, K decays (1 GeV)

Details depend on
* Interaction cross sections
» Hadronic and electromagnetic particle production

» Decays, transport of particles at energies from MeV’s to 102° eV (above &

LcceleratA €
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Scaled flux E*° J(E) (m

Cosmic ray energy spectrum

Direct measurements up to E ~ 10%* eV - Primary particles
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Cosmic ray energy spectrum
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Direct and indirect measuremets

Direct measurements up to E ~ 1014 eV
- Primary particles (balloons, satellites)

Indirect measurements with (under)ground experiments
to E > 1014 eV

v Cosmic ray interactions with atmosphere and
Extensive Air Showers (EAS)

v’ Measurements around the knee (Eas-Top,
Kaskade, Casa ...) and beyond (Kaskade-Grande)

v Ultra high energy cosmic rays (Auger, HiRes)

v Underground experiments (Macro, Emma)

v COSMIC RAY PHYSICS AT CERN (LEP: L3+C,
ALEPH, DELPHI; LHC: CMS, ALICE)



Astroparticle physics

Cosmic rays | \

\) Particle \ ‘

phy5|cs

astrophysu:s

v DETECTION AND STUDY OF COSMIC RAY

v' STUDY OF HIGH ENERGY INTERACTIONS IN p-
P, Pb-Pb COLLISIONS TO EXTRAPOLATE
INFORMATION FOR COSMIC RAY PHYSICS
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CR PHYSICS WITH HEP APPARATA

200 x 200 m?

Ny S BN

<> Small apparatus (with respect to EAS experiments) W
<> Low underground
<> Detection of muons crossing the rock

=

* These apparatus are not designed for cosmic ray
physics ® :

< Only muons are detected
< Short live time of data taking

v' Advantage: detectors with very high performances, j
presence of magnetic field ©

v" Remember that the only one result from LEP that P " MACRO: 12 x 70 m?
did not agree “perfectly” with the Standard Model [Fare® (.
was the observation of high multiplicity muon in ~ PSHESE 4
cosmic events (muon bundles).




LEP results

(130 m, E
DELPHI (100 m, E_, = 50 GeV)
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Lavowul of CosmoALEPH

< ALEPH: 140 m of rock, momentum muon threshold p > 70/cos®©
v underground scintillators, HCAL (horizontal area ~ 50 m? ), TPC project

<> DELPHI: 100 m of rock, momentum muon threshold p > 52/cos@
v Hadron calorimeter (horizontal area ~ 75 m?), muon barrel, TPC, ToF ar

< L3+C: 30 m of rock, momentum muon threshold p > 20/cos0 + surface
v Scintillator surface array (200 m?), trigger, muon barrel (100 m?), hadror

COSMIC RAY ENERGY COVERAGE FROM 104



LEP results

29th International Cosmic Ray Conference Pune (2005) 10, 137.150
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LEP results: Muon Bundles

Muon bundles at LEP

ALEPH DELPHI L3+C

14



Events

LEP: Muon Multiplicity spectrum

Astroparticle Physics 19 (2003)
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Data indicate that heavier
component is needed to explain
higher multiplicity muon bundles
These muon bundles are not well
described (almost an order of
magnitude above the simulation)
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‘523 he conclusion is similar to Aleph :

However, even the combination of
extreme assumptions of highest
measured flux value and pure iron
spectrum fails to describe the
abundance 011 high  multiplicity
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Astroparticle Physics 28 (2007) 273—-286

DELPHI: ~18.5 days of dat

+ 7 soturated
events

20 40 60 80 100 120 140 160 180

muon multiplicity l 5



LHC experiment with CR Physics program
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Atmospheric muon reconstruction at CMS

CERN-PH-EP-2010-011 2010/05/31

N P
\ 4 } standalone-muon
2a® track (in bottom sector)

1/



CMS
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CMS has measured the flux ratio of positive- to negative-charge cosmic
ray muons, as a function of the muon momentum and its vertical

component. The result is in agreement with previous measurements by
underground experiments. This is the most precise measurement of the

charge ratio in the momentum region below 0.5 TeV/c. It is also the first

physics measurement using muons with the complete CMS detector.
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ALICE spectrometer
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ALICE Central tracking system

Central detectors
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ALICE Cosmic ray detector
ACORDE

:
mm T ") , \\ |Track|ng ]
S 7 ACORDE is used to:

XZ distribution of tracks propagated only to each ACORDE module: LHC11d
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Cosmic ray Physics toplcs in ALICE

ALICE ACORDE ——u Abs?mer
TorL. Ny Bt 3L\ Ch:\fnbérs
p rno\ : ,rj::"' ,‘I'
// ]|
[
| |
f

' p = proton
LL = muon
T = pion
Vv = neutrino

et = alactron
e~ = positron
¥ = photon

Topics of interest in Cosmic ray
analysis in ALICE:

o Y

ICE located 4o}ln 0 Muon multiplicity distribution
derground ~ d Study of cosmic muon

30 m of rock (molasse) bundles

Threshold Muon Energy ~ 16 GeV

O pt/ur charge ratio measurement 22



LHC ALICE results

Presented last week at ICRC-2015
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100k =
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= ty hot =
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Number of muons

ALICE found a smooth distribution up to #u < 70 and 5 events with more than
100 atmospheric muons (HMM) 2 3



LHC results
ALICE

The data approach the proton curve (low multiplicities). High multiplicity data lie closer
to the iron curve. This suggests that the average mass of the primary cosmic-ray flux
increases with increasing energy.

T | [ [ [ [ | [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ | [ [ [ [ | —-

N\ ALICE

CERN-PH-EP-2015-196
http://arxiv.org/abs/1507.07577

\ —+— Data

\ === = Monte Carlo: Fe as primary cosmic ray

T~

Presented last week at ICRC-2015

10 20 30 40 50 60 70
Number of muons

Number of events

Monte Carlo: proton as primary cosmic ray

10
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High muon multiplicity rates

ALICE

Presented last week at ICRC-2015

CERN-PH-EP-2015-196
http://farxiv.org/abs/1507.07577

HMM events

CORSIKA 6990
QGSIJET 1I-03

CORSIKA 7350

QGSIET II-04

proton iron

Data

Period [days per event]
Rate [x 107° Hz]
Uncertainty (%) (syst + stat)

[1.6 6.0
1.0 1.9
8 20

6.2
1.9
49

Pure iron sample simulated with QGSJET 11-04 model reproduces HMM event rate in close

agreement with the measured value.

Independent of the version model, the rate of HMM events with pure proton cosmic-ray

composition is difficult to reproduce.

This result is compatible with recent measurements which suggest that the composition of
the primary cosmic-ray spectrum with energies larger than 1016 eV is dominated by

heavier elements: Phys. Rev. Lett. 107 (2011) 171104.

25



Summary (1)

Accelerator apparatus can be suitable for cosmic-ray physics : LEP experiments were
the pioneers on this topic. LHC (ALICE and CMS) have some results i, apart from the
global physics studies used in model tuning of hadronic interactions.

LEP experimments provided important results 1n

the field of cosmic ray physics ( HE interactions, LEP
source searches, composition ... )

Atmospheric muon energy spectrum, charge ratio (and

angular dependencies of both items)

» Hadronic interaction models cannot describe observed muon

spectrum and charge ratio (for given CR composition)

Muon bundles

*Low multiplicities favor light nuclei as
primaries, median multiplicities show trend to
heavier primaries

*At high multiplicities the interaction models

probably fail to describe hard muon bundles 2 6



Summary (2)

First measurement of LHC era = Cosmic charge ratio by CMS (excellent
tracking capabilities)

ALICE MMD is similar to the LEP previous measurements. For the first

time the rate of HMM events have been satisfactory reproduced using LHC
conventional hadron interaction models (QGSJET 11-04 tuned with LHC

data) = test of the LHC results with hadronic models OK

ALICE observation places significant constraints on alternative, more
exotic, production mechanisms.

For more details please check:

“Study of cosmic ray events with high muon multiplicity using the
ALICE detector at the CERN Large Hadron Collider”, ALICE
Collaborarion (CERN-PH-EP-2015-196, arXiv:1507.07577 )

2/


http://arxiv.org/abs/1507.07577
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Backup slides
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Main topic with accelerator apparatus

Magnetic field + Precise momentum
measurement
Muon momentum spectrum and

High tracking capabilities
Muon-bundles (high muon density):
Aleph, Delphi, L3 and Alice

charge ratio (L3) Charge ratio (CMS)
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Backup slides

— e ——

*1 1) 4.75 p/m2 Zenith=40.8°
ALEPH: ~20 days of dat{i taking Primary energy = 3 x 1016 eV
2) 5.3 p/m? Zenith=37.79
Primary energy = 3 x 101% eV
3) 8.9 y/m? Zenith=400
Primary energy = 6 x 1016 eV
4) 8.2 y/m? Zenith=48.69
Primary energy = 7 x 1016 eV
5) 18.6 y/m? Zenith=27°
Primary energy = 1017 eV

Astroparticle Physics 19 (2003)|513-52

rrultinlicity

The five highest multiplicity events, with up to 150 muons
within an area of 8 m?, occur with a frequency which is
almost an order of magnitude above the simulation. 30



Backup slides

General: All ALICE sub-detector components are to be numbered starting from zero.

Rotational Numbering: Counter-clockwise (coinciding with the direction of increase of the angle ©)
on the side A of the detector with the observer looking toward side C and clockwise on side C of the
detector with the observer looking toward side A. This way, sub-detectors which have mirror
symmetry with respect to the x,y plane will have the same part numbers facing each other on the two
sides of the detector. If a sub-detector part is sectioned by the x axis, it will be number 0, otherwise the
first sub-detector part at positive y will be number 0.

Linear Numbering: The counting increases from side A to side C, opposite to the z axis direction,
without interruption in the middle at z = 0.

Radial Numbering: The counting increases with increasing radius.




Backup slides
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Density of the galactic primary cosmic ray: ~ 1 eV/cm3

Protons for energies below 1016 eV
Heavy nuclei composition: ~ 81016 eV (Phys. Rev. Lett. 107,/171104 (2011))32




Backup slides

Scaled flux E2°J(E) (m?s'srieV'®)
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Backup slides

S

MACRO-EASTOP KASCADE :

A=mass of the primary nucleus
There is an increase of the:

Primary Composition Ln(A) vs Energy

<A> above the knee
<A>~8at3x 10 eV
<A>~ 30 at 3 x 1016 eV

'l | EASTOP (GeV muons)

R T 7 R T A Sk T R R |
Loe(E/TeV)

KASCADE-GRANDE :

- electron-poor sample selects heavy
elements (Fe) and shows a knee at E~ 8 x
1016 eV

- electron-rich sample selects light

elements and the knee is at Tower energy
E~3x10%eV

10" ey 10™eV
10> ———vr—rrry e
s 4 all-particle (104489 events) -
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Backup slides

68 atm. Muons
MCN: 51
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Backup slides

v perpendicular B

H trajectnr?' F=evB force in a magnetic field
In magnetic u trajectory F=dp/dt=y m dv/dt=y m v2/r= p vir
field pvir=evB
p=eBr [m,T,Gev/c]
v=velocity
S=r_h p=momentum
- s=sagitta
h?2=r2—-12/4 L=length
B=magnetic
s=r-\r?-L%4 field
E=ch§rge
s=r-r\V1-L2%4r? r=radius
elL?B
(1+x)* = 1+ax

o =% x=-(L2/4r2) [ = === ——

s ~ L2/8r 37



Backup slides

elL?2B

P = mmemeeea- 8p
8s op/p = 0s/S = Og -===-=-=---
(e L2 B)
H}h magnetic filed
B=0.5T in L3+C

- 10 have a good resolution it is
necessary to have a large lever
arm L

Leverarm ~ 11 min L3+C

38



Backup slides

elL?2B 8p
p= e op/p = 0s/S = O -----------
(e L2 B)

We define the Maximum Detectable Momentum (PMD) =
The value of p for which the error is big as the momentum itself

oplp = 1 Py = (€ L2 B)/(8 os)

Example for L3+C : PMD = (1*112*0.5)/(8*0.001) =
os=1mm = 0.001 m 7562 GeVic ~ 7.5 TeVic
L=11m The maximum detectable momentum of the
B=05T spectrometer, defined as the momentum at which p/p

reaches unity, is 0.78 TeV for muons measured in only
one octant and about 5 TeV for muons measured in

two octants. Phys. Letters B 598 (2004) 15-32
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Backup slides

Example for L3+C :
os=1mm
L=11m
B=05T

op/p = 0s/sS = Os -----------

p = 100 GeV/c Resolution op
op = (0.001 * 8 * 100?/(1 * 11?* 0.5)
op = 1.32 GeV/c ==> 1.3%

p=1TeV/c Resolution op
op = (0.001 * 8 * 10002/(1 * 112 * 0.5)
op = 132 GeV/c ==> 13%

40



