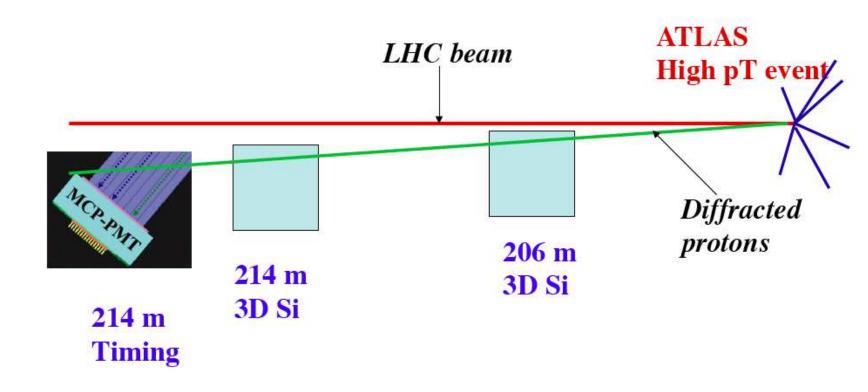
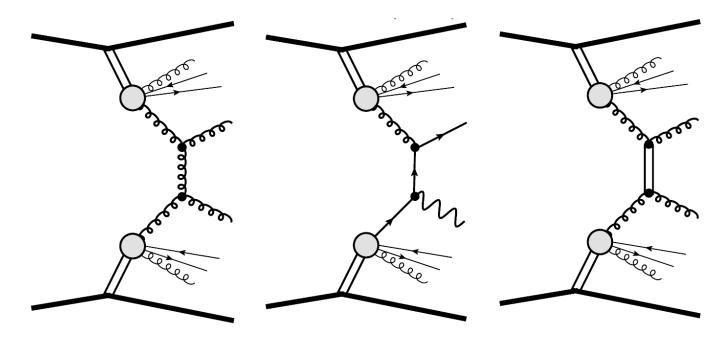

Forward Physics with proton tagging at LHC

Christophe Royon Kansas University, USA; PAN, Cracow, Poland Institute of Physics, Prague, Czech Republic

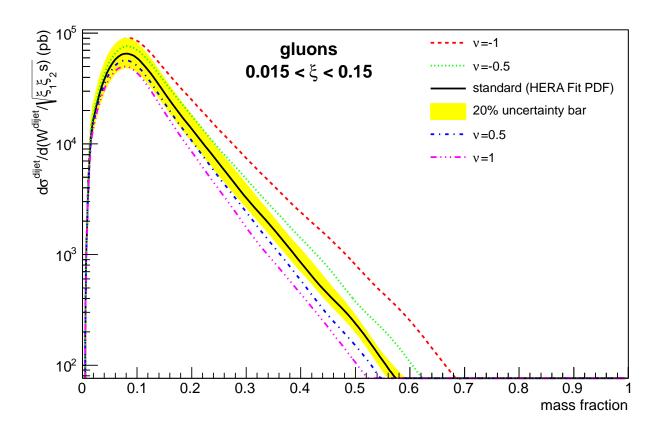

LISHEP conference, Manaus, Brazil, August 3-8 2015

Contents:

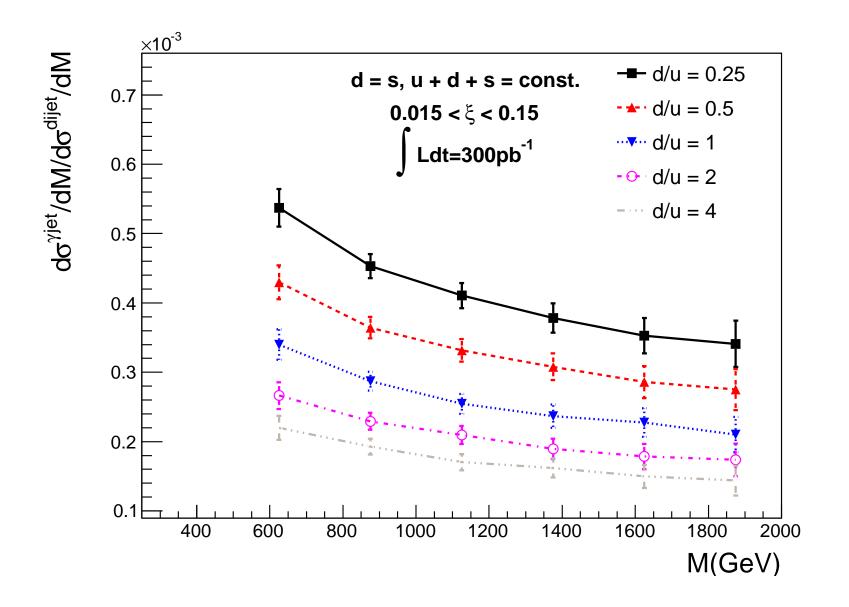
- Pomeron structure in quarks/gluons
- Exclusive diffraction
- Anomalous quartic $\gamma\gamma\gamma\gamma\gamma$ couplings


What is AFP/CT-PPS?

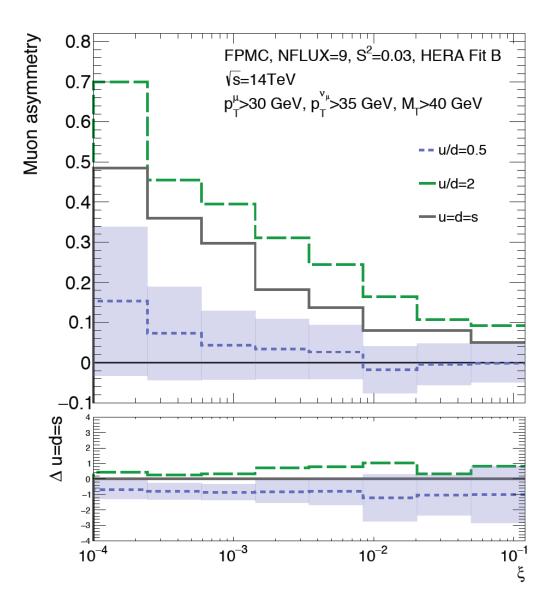
- Tag and measure protons at ±210 m: AFP (ATLAS Forward Physics) in ATLAS, CT-PPS (CMS TOTEM - Precision Proton Spectrometer) in CMS/Totem
- AFP detectors: measure proton position (Silicon detectors) and time-of-flight (timing detectors)
- For low β^* runs, good acceptance for a diffractive mass between ${\sim}400\text{-}1400~\mathrm{GeV}$


Hard diffraction at the LHC

- Dijet production: dominated by gg exchanges; γ+jet production: dominated by qg exchanges (C. Marquet, C. Royon, M. Saimpert, D. Werder, arXiv:1306.4901)
- Jet gap jet in diffraction: Probe BFKL (C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010; O. Kepka, C. Marquet, C. Royon, Phys. Rev. D79 (2009) 094019; Phys.Rev. D83 (2011) 034036)
- Three aims
 - Is it the same object which explains diffraction in pp and ep?
 - Further constraints on the structure of the Pomeron as was determined at HERA
 - Survival probability: difficult to compute theoretically, needs to be measured, inclusive diffraction is optimal place for measurement

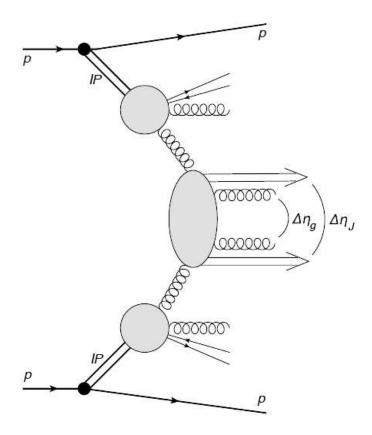

Inclusive diffraction at the LHC: sensitivity to gluon density

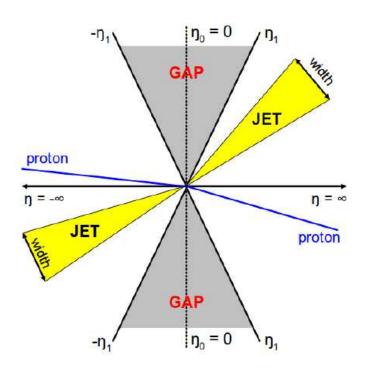
- Predict DPE dijet cross section at the LHC in AFP/CT-PPS acceptance, jets with $p_T > 20$ GeV, reconstructed at particle level using anti-k_T algorithm
- Sensitivity to gluon density in Pomeron especially the gluon density on Pomeron at high β : multiply the gluon density by $(1 \beta)^{\nu}$ with $\nu = -1, ..., 1$
- Measurement possible with 10 pb⁻¹, allows to test if gluon density is similar between HERA and LHC (universality of Pomeron model)
- Dijet mass fraction: dijet mass divided by total diffractive mass $(\sqrt{\xi_1\xi_2S})$



Inclusive diffraction at the LHC: sensitivity to quark densities

- Predict DPE $\gamma+{\rm jet}$ divided by dijet cross section at the LHC
- Sensitivity to universality of Pomeron model
- Sensitivity to quark density in Pomeron, and of assumption: $u = d = s = \overline{u} = \overline{d} = \overline{s}$ used in QCD fits at HERA

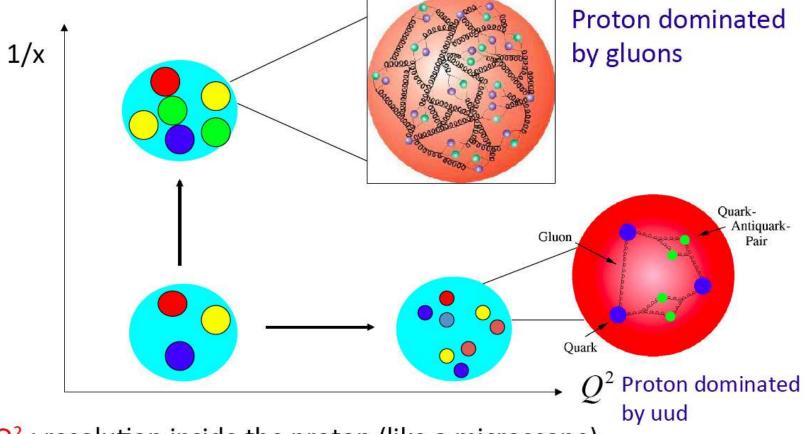

W charge asymmetry: sensitivity to quark densities



- Measure the average W charge asymmetry in ξ bins to probe the quark content of the proton: $A = (N_{W^+} N_{W^-})/(N_{W^+} + N_{W^-})$
- A. Chuinard, C. Royon, R. Staszewski in preparation

Jet gap jet events in diffraction

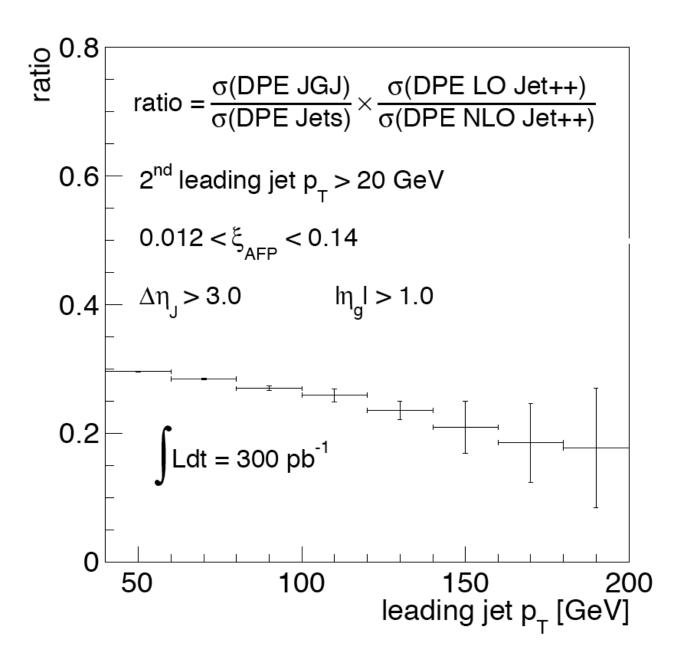
- Study BFKL dynamics using jet gap jet events
- Jet gap jet events in DPE processes: clean process, allows to go to larger $\Delta\eta$ between jets
- See: Gaps between jets in double-Pomeron-exchange processes at the LHC, C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010



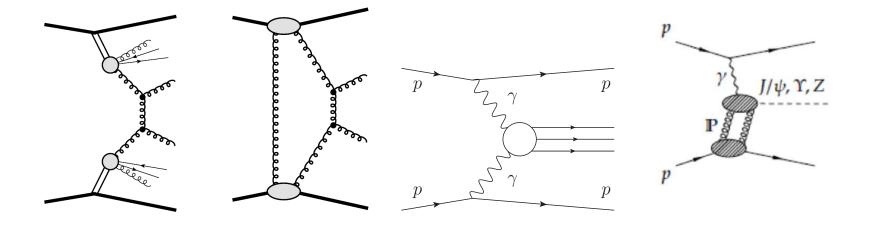
Looking for BFKL effects

- Dokshitzer Gribov Lipatov Altarelli Parisi (DGLAP): Evolution in Q^2
- Balitski Fadin Kuraev Lipatov (BFKL): Evolution in x

Aim: Understanding the proton structure (quarks, gluons)

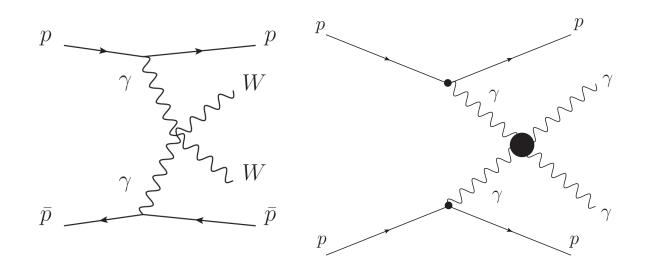


Q² : resolution inside the proton (like a microscope)

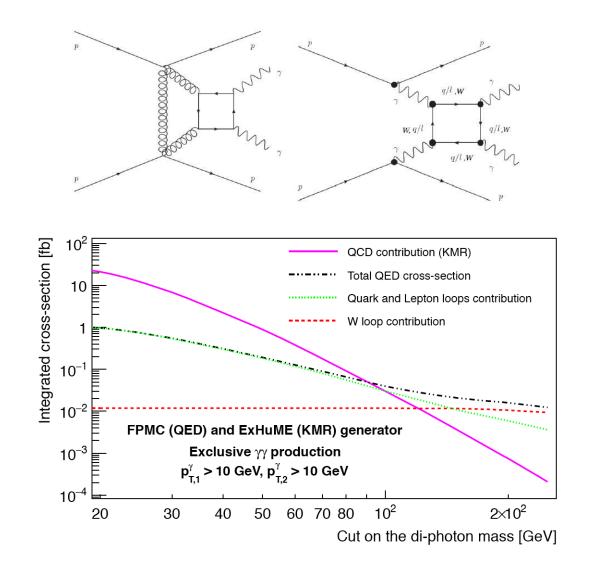

X : Proton momentum fraction carried away by the interacting quark

Jet gap jet events in diffraction

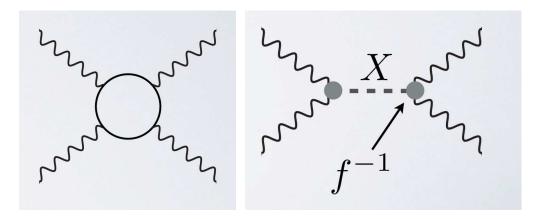
- Measure the ratio of the jet gap jet to the dijet cross sections: sensitivity to BFKL dynamics
- As an example, study as a function of leading jet p_T



Exclusive diffraction


- Many exclusive channels can be studied at medium and high luminosity: jets, χ_C , charmonium, J/Ψ
- Possibility to reconstruct the properties of the object produced exclusively (via photon and gluon exchanges) from the tagged proton: system completely constrained
- Possibility of constraining the background by asking the matching between the information of the two protons and the produced object
- Check the f₀(1500) or f₀(1710) glueball candidates (in excess of the meson SU(3) multiplet and resonances compatible with glueball in terms of mass, spin, parity, decay channels)
- Lattice calculations predict a 0 + + glueball at 1.7 GeV with a \sim 100 MeV uncertainty, favoring the $f_0(1710)$ candidate
- Central exclusive production is a potential channel for BSM physics: sensitivity to high masses up to 1.8 TeV (masses above 400 GeV, depending how close one can go to the beam)

Search for $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous coupling


- Study of the process: $pp \to ppWW$, $pp \to ppZZ$, $pp \to pp\gamma\gamma$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1TeV) = 5.9$ fb
- Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma\gamma$; motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- Rich γγ physics at LHC: see E. Chapon, O. Kepka, C. Royon, Phys. Rev. D78 (2008) 073005; Phys. Rev. D81 (2010) 074003; S.Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, Phys.Rev. D89 (2014) 114004 ; S.Fichet, G. von Gersdorff, B. Lenzi, C. Royon, M. Saimpert, JHEP 1502 (2015) 165

SM $\gamma\gamma$ exclusive production

- QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- Possibility to measure KMR contribution at low $m_{\gamma\gamma}$ in high β^* runs: with two protons tagged in TOTEM/ALFA

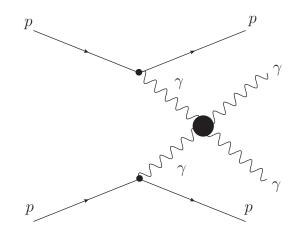
Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

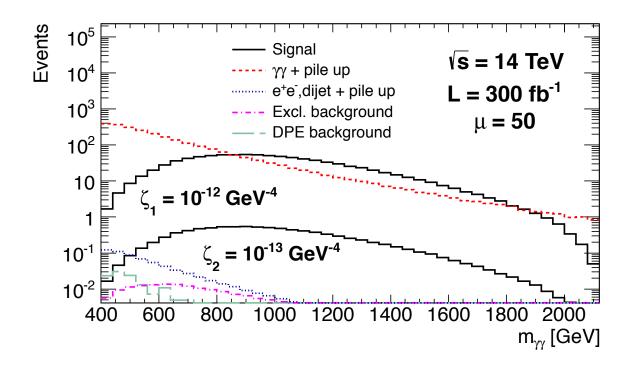
$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• $\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charge particles

$$\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}$$

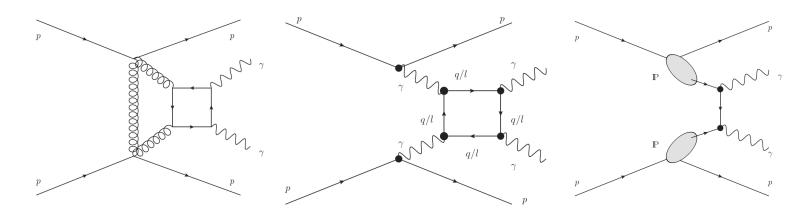

where the coupling depends only on Q^4m^{-4} (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

• ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_s m)^{-2} d_{1,s}$ where f_s is the $\gamma \gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1 \sim 10^{-13}$

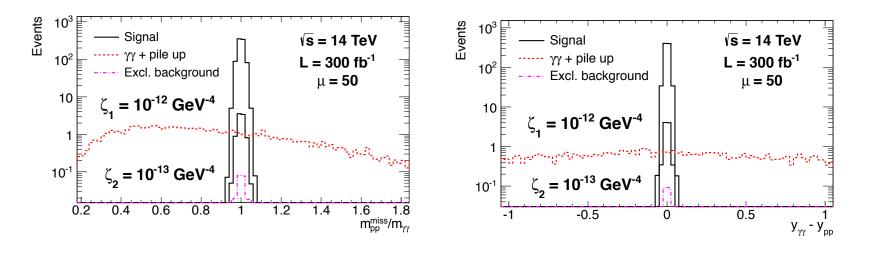

★ Warped Extra Dimensions solve hierarchy problem of SM ★ 5th dimension bounded by two branes ★ SM on the visible (or TeV) brane ★ The Kaluza Klein modes of the graviton couple with TeV strength $\mathcal{L}^{\gamma\gamma h} = f^{-2} h_{\mu\nu}^{KK} (\frac{1}{4}\eta_{\mu\nu}F_{\rho\lambda}^2 - F_{\mu\rho}F_{\rho\nu})$ $f \sim \text{TeV}$ $m_{KK} \sim \text{few TeV}$ ★ Effective 4-photon couplings $\zeta_i \sim 10^{-14} - 10^{-13} \text{ GeV}^{-2}$ possible ★ The radion can produce similar effective couplings

- Which models/theories are we sensitive to using AFP/CT-PPS
- Beyond standard models predict anomalous couplings of ${\sim}10^{-14}$ -10 $^{-13}$
- Work in collaboration with Sylvain Fichet, Gero von Gersdorff

Search for quartic $\gamma\gamma$ anomalous couplings



- Search for $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...



Search for $\gamma\gamma\gamma\gamma$ quartic anomalous couplings: Analysis flow

- Studies performed at hadron level but taking into account the main detector/pile-up effects
- By default, $> 1\gamma$ converted is requested (1 mm resolution), but all γ are also considered
- pile-up simulated in AFP/CT-PPS: 50, 100, 200...
- Main detector effects are included (from ATLAS ECFA studies ATL-PHYS-PUB-2013-009), for instance:
- Photon conversion probability: 15% in barrel, 30% in the end-caps; γ rapidity, Φ , and p_T resolutions taken into account as well as the reconstruction efficiency
- Misidentification of electron as a γ : 1%
- Misidentification of jet as a γ : 1/4000,
- All backgrounds were considered: DPE diphoton production, Higgs decaying into photons, exclusive production of diphtoon, dilepton, dijet with lepton/jet misidentified, pile up (ND production of Drell-Yan, dijet, diphoton...)

Search for quartic $\gamma\gamma$ anomalous couplings

- Trigger: 2 high p_T central photons, $P_{T_1} > 200$ GeV, no special CMS/ATLAS trigger needed
- Protons are detected in AFP/CT-PPS at high $\xi > \sim 0.04$: massive objects are produced, we do not need to be very close to the beam
- Exclusivity cuts: diphoton mass compared from missing mass computed using protons, rapidity difference between diphoton and proton systems: suppresses all pile-up backgrounds
- For 300 fb⁻¹ and a pile-up of 50: 0.2 background event for 32 signal events for an anomalous coupling of 2 10⁻¹³
- Exclusivity cuts are fundamental to suppress all background and increase the sensitivity

Search for quartic $\gamma\gamma$ anomalous couplings: Results from effective theory

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$ \begin{bmatrix} 0.015 < \xi_{1,2} < 0.15, \\ p_{\mathrm{T1},(2)} > 200, (100) \text{ GeV} \end{bmatrix} $	130.8	36.9(373.9)	0.25	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \text{ GeV}$	128.3	34.9(371.6)	0.20	0	0.2	1023
$\begin{aligned} & [p_{\rm T2}/p_{\rm T1} > 0.95, \\ & \Delta \phi > \pi - 0.01] \end{aligned}$	128.3	34.9 (371.4)	0.19	0	0	80.2
$\sqrt{\xi_1\xi_2s} = m_{\gamma\gamma} \pm 3\%$	122.0	32.9 (350.2)	0.18	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	119.1	31.8 (338.5)	0.18	0	0	0

- No background after cuts for 300 fb⁻¹ without needing timing detector information
- Exclusivity cuts needed to suppress backgrounds:
 - Without exclusivity cuts using AFP/CT-PPS: background of 80.2 for 300 fb⁻¹ for a signal of 34.9 events ($\zeta_1 = 2 \ 10^{-13}$)
 - With exclusivity cuts: 0.18 background for 31.8 signal
- String theory/grand unification models predict couplings via radions/heavy charged particles/dilatons for instance up to 10^{-14} - 10^{-13}
- Introducing form factors to avoid quadratical divergences of scattering amplitudes due to anomalous couplings in conventional way: $a \rightarrow \frac{a}{(1+W\gamma\gamma/\Lambda_{cutoff})^2}$ with $\Lambda_{cutoff} \sim 2$ TeV, scale of new physics

$\frac{\text{Search for quartic } \gamma\gamma \text{ anomalous couplings:}}{\text{Results from effective theory}}$

Sensitivities reaching values of extradim models

Luminosity	300 fb^{-1}	300 fb^{-1}	300 fb^{-1}	3000 fb^{-1}
pile-up (μ)	50	50	50	200
coupling	\geq 1 conv. γ	\geq 1 conv. γ	all γ	all γ
$({\sf GeV}^{-4})$	5 <i>o</i>	95% CL	95% CL	95% CL
ζ_1 f.f.	$8 \cdot 10^{-14}$	$5 \cdot 10^{-14}$	$3 \cdot 10^{-14}$	$2.5 \cdot 10^{-14}$
ζ_1 no f.f.	$2.5 \cdot 10^{-14}$	$1.5 \cdot 10^{-14}$	$9 \cdot 10^{-15}$	$7 \cdot 10^{-15}$
ζ_2 f.f.	$2. \cdot 10^{-13}$	$1. \cdot 10^{-13}$	$6 \cdot 10^{-14}$	$4.5 \cdot 10^{-14}$
ζ_2 no f.f.	$5 \cdot 10^{-14}$	$4 \cdot 10^{-14}$	$2 \cdot 10^{-14}$	$1.5 \cdot 10^{-14}$

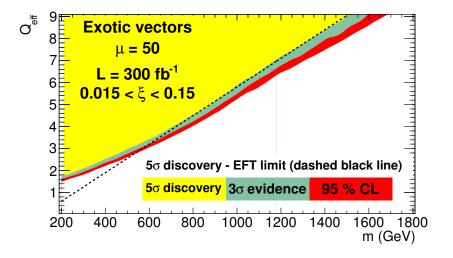
Full amplitude calculation

- Effective field theory valid if $S << 4m^2$, S smaller than the threshold production of real particles
- Since the maximum proton missing mass is ~ 2 TeV at the 14 TeV LHC, the effective theory needs to be corrected for masses of particles below ~ 1 TeV \rightarrow use of form factor which creates an uncertainty on the results (depends on the exact value of form factors)
- Solution: compute the full momentum dependence of the 4 photon amplitudes: computed for fermions and bosons
- Full amplitude calculation for generic heavy charged fermion/vector contribution
- Existence of new heavy charged particles enhances the $\gamma\gamma\gamma\gamma$ couplings in a model independant way
- Enhancement parametrised with particle mass and effective charge $Q_{eff}=QN^{1/4}$ where N is the multiplicity

Search for quartic $\gamma\gamma$ anomalous couplings: Results from full theory

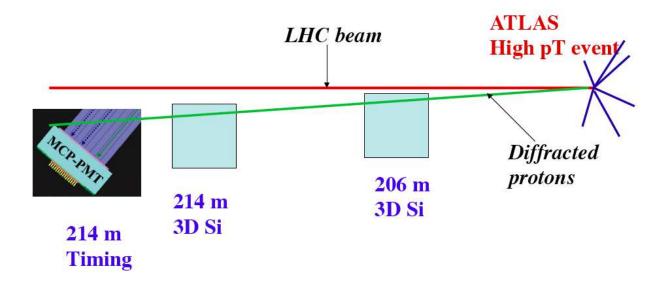
Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$\begin{bmatrix} 0.015 < \xi_{1,2} < 0.15, \\ p_{\mathrm{T1},(2)} > 200, (100) \text{ GeV} \end{bmatrix}$	130.8	36.9(373.9)	0.25	0.2	1.6	2968
$m_{\gamma\gamma} > 600 { m ~GeV}$	128.3	34.9(371.6)	0.20	0	0.2	1023
$[p_{\rm T2}/p_{\rm T1} > 0.95, \Delta \phi > \pi - 0.01]$	128.3	34.9(371.4)	0.19	0	0	80.2
$\sqrt{\xi_1 \xi_2 s} = m_{\gamma\gamma} \pm 3\%$	122.0	32.9 (350.2)	0.18	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	119.1	$31.8 \ (338.5)$	0.18	0	0	0

- No background after cuts for 300 fb⁻¹ without needing timing detector information
- For signal: 119.1 events for $Q_{eff} = 4$, m = 340 GeV
- Results for full calculation lay between the effective field result with/without form factor as expected since effective calculation not valid in the region of $S\sim m^2$


Full amplitude calculation

• 5 σ discovery sensitivity on the effective charge of new charged fermions and vector boson for various mass scenarii for 300 fb^{-1} and $\mu = 50$

Mass (GeV)	300	600	900	1200	1500
$Q_{\rm eff}$ (vector)	2.2	3.4	4.9	7.2	8.9
Q_{eff} (fermion)	3.6	5.7	8.6	-	-


- Unprecedented sensitivites at hadronic colliders reaching the values predicted by extra-dim models - For reference, we also display the result of effective field theory (without form factor) which deviates at low masses from the full calculation
- For Q_{Jeff} = 4, we are sensitive to new vectors (fermions) up to 700 (370) GeV for a luminosity of 300 fb⁻¹

Conclusion

- Better understanding of the Pomeron structure in terms of quarks and gluons at the LHC: new kinematical domain, comparison with HERA
- Exclusive production of jets, vector mesons...
- Unprecedented sensitivities to $\gamma\gamma\gamma\gamma$ anomalous couplings reaching the values predicted by extra-dim models: effective theories and full models are used
- Proton tagging is crucial to suppress the background (mainly pile up) for exclusive events; matching between proton and diphoton information (mass, rapidity)
- Timing detectors are crucial for WW production, less important (not used in the analysis) for $\gamma\gamma$ production

