ATLAS results on Higgs boson couplings and properties

F. Monticelli (IFLP/UNLP/CONICET) for the ATLAS collaboration

Aug 4, 2015

I F L P CONICET U N L P

LISHEP2015@Manaus.br

Outline

- In the following slides, results on ATLAS measurements of some of the properties of the Higgs boson discovered in 2012
- Mass measurement will be shown first. In the SM other properties can be computed for a given value of the Higgs mass.

Outline:

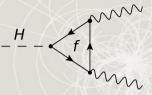
Mass measurement

- $H \rightarrow \gamma \gamma$ channel
- $H \rightarrow ZZ^* \rightarrow 4\ell$ channel
- Mass combination

Production, decay and coupling strengths

- Measurement of signal strength
- Production modes, XS and coupling strengths
- Spin
- Summary

Introduction


- ATLAS have chosen a model-independent approach to measure the Higgs boson mass.
- Fitting the mass spectra of the two decay modes $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.
- In these two channels the Higgs boson produces a narrow mass peak with a typical experimental resolution of 1.6 GeV to 2 GeV over a smooth background.
- Effects are expected between the Higgs boson signal and SM background processes.

 $H \rightarrow ZZ^* \rightarrow 4\ell$ interference is negliggible if Higgs width is close to the SM value $H \rightarrow \gamma\gamma$ interference is expected to have a small impact in the mass measurement (about 50 MeV) with respect to current experimental uncertainties

$H \rightarrow \gamma \gamma$ channel

Event selection

- Events selected by di-photon trigger
- Two offline identified photons passing a *tight* identification
- \bullet Within the pseudorapidity acceptance: 0< $|\eta|$ <1.37, 1.56< $|\eta|$ <2.37
- The calorimeter pointing information are combined with the track information to determine the z position of the H decay
- $\gamma_{p_T}^1 > 0.35 imes m_{\gamma\gamma}$, $\gamma_{p_T}^2 > 0.25 imes m_{\gamma\gamma}$, 105 GeV $< m_{\gamma\gamma} <$ 160 GeV
- Photons are required to be isolated:

Calorimeter Energy deposit in a cone of $\Delta R = 0.4$ around the photon candidate excluding an area of $\Delta \eta \times \Delta \phi$ =0.125×0.175

Track Scalar sum of track p_T in a cone ΔR =0.2, except tracks associated to converted photons

Data-taking	Trigger	Calorimeter isolation	track isolation
7 TeV	$\gamma_{p_T}^{1,2} > 20 \text{GeV}$	< 5.5 GeV	none
8 TeV	$\gamma_{\mathcal{P}_{I}}^{1} > 35$ GeV, $\gamma_{\mathcal{P}_{I}}^{2} > 25$ GeV	< 6 GeV	< 2.6 GeV

10 Categories defined by the $|\eta|$ of each photon and the p_{Tt}^{1} with different s/b ratios

¹Component of the diphoton thrust axis in the transverse plain

Signal/Background modeling

Signal modeling

- The signal mass spectrum is modeled by the sum of a Crystal Ball function for the bulk of the events and a wide Gaussian distribution to model the far outliers in the mass resolution
- All parameters as a function of the mass are obtained by fitting MC simulated signal

Background modeling

- Background modeling is taken from 12 function candidates including exponentials of first-, second-, or third-order polynomials, and third-, fourth-, or fifth-order Bernstein polynomials.
- For each category, background only MC simulation is fitted by signal+background hypothesis using all background models.
- The fitting function is chosen to be the one that better fit the background with the smallest bias on the signal.

Mass Measurement

- The mass spectra for the ten data categories and the two center-of-mass energies are fitted simultaneously
- Using an unbinned maximum likelihood fit with background and signal parameterization
- Mass and signal strength (yield normalized to the SM prediction) and background parameters obtained from the fit.
- Systematic uncertainties are dominated by the photon Energy scale.

Result

 $m_{\rm H}$ = 125.98 ± 0.42(stat) ± 0.28(syst) GeV μ = 1.29 ± 0.30

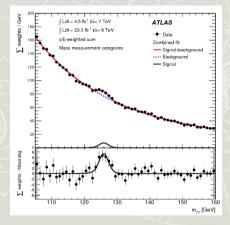


Figure: Invariant mass distribution in the H $\rightarrow \gamma\gamma$ analysis for data (7 TeV and 8 TeV samples combined), showing weighted data points with errors, and the result of the simultaneous fit to all categories.

F. Monticelli ATLAS results on Higgs boson couplings and properties

$\textbf{H}{\rightarrow}\textit{ZZ}^* \rightarrow 4\ell \text{ channel}$

Event selection

- Events selected by a trigger requiring either a single muon, single electron, two muons or two electrons (see table below)
- Four leptos required (4e, $2e2\mu$, $2\mu 2e$, 4μ)
 - first pair matches the Z mass: 50 GeV $< m_{12} <$ 106 GeV.
 - second pair matches: $m_{thr}(m_{4\ell}) < m_{34} < 115$ GeV.

Electron ID Cut based for 7 TeV and likelihood for 8 TeV data, $0 < |\eta| < 2.47$, $p_T > 7$ GeV Muon ID Uses tracks from ID, MS and information from the calorimeters, $0 < |\eta| < 2.7$, $E_T > 6$ GeV

• Two same flavor opposite sign leptons required, $\Delta R > 0.1(0.2)$ for same (different) flavor

Multivariative Discriminant to separate signal and ZZ* background

• Multivariative discriminant was implemented to better discriminate signal over ZZ* background based on Boosted Decision Tree

• Variables for the training:
$$p_T^{4\ell}$$
, $\eta^{4\ell}$ and $D_{ZZ^*} = ln\left(\frac{|M_{sig}|^2}{|M_{ZZ}|^2}\right)$; M_{sig} , M_{ZZ} taken from LO MadGraph

Data-taking	single Trigger	double Trigger
7 TeV	$e_{E_T}>$ 20 GeV, $\mu_{\mathcal{P}_T}>$ 18 GeV	$arphi_{E_T}^{1,2}>$ 10 GeV, $\mu_{\mathcal{P}_T}^{1,2}>$ 6 GeV
8 TeV	$e_{E_T}>$ 25 GeV, $\mu_{\mathcal{P}_T}>$ 18 GeV	$e_{E_T}^{1,2} > 13 \text{ GeV}, \mu_{p_T}^{1,2} > 13 \text{ GeV} \text{ or } \mu_{p_T}^1 > 18 \text{ GeV} \ \mu_{p_T}^2 > 8 \text{ GeV}$

Mass measurement

2D fit

- The mass measurement is performed on a 2D fit on $m_{4\ell}$ and the output of the BDT $O_{BDT_{77*}}$
- The PDF in the 2D model is:

 $\begin{aligned} \mathcal{P}(m_{4\ell}, O_{BDT_{ZZ^*}} | m_H) &= \\ \mathcal{P}(m_{4\ell} | O_{BDT_{ZZ^*}}, m_H) \mathcal{P}(O_{BDT_{ZZ^*}} | m_H) &\simeq \\ \left(\sum_{n=1}^{4} \mathcal{P}_n(m_{4\ell} | m_H) \theta_n(O_{BDT_{ZZ^*}}) \right) \mathcal{P}(O_{BDT_{ZZ^*}} | m_H) \end{aligned}$

- θ_n defines four equal-sized bins for the value of the BDT_{ZZ*}
- \mathcal{P}_n is the 1D PDF for $m_{4\ell}$

Result

 m_{H} = 124.51 ± 0.52 (stat) ± 0.06 (syst) GeV μ = 1.66 $^{+0.45}_{-0.38}$

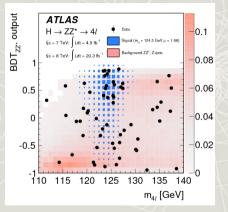


Figure: Distribution of the BDT ZZ* output, versus $m_{4\ell}$ for the selected candidates in the 110-140 GeV $m_{4\ell}$ range for the combined 7 TeV and 8 TeV data samples.

Mass combination

 For the combination, hypothesized values of m_H are tested using the profile likelihood ratio:

 $\Lambda(m_H) = \frac{L(m_H, \hat{\hat{\mu}}_{\gamma\gamma}(m_H), \hat{\hat{\mu}}_{4\ell}(m_H), \hat{\hat{\theta}}(m_H)}{L(\hat{m}_H, \hat{\mu}_{\gamma\gamma}, \hat{\mu}_{4\ell})}$

• $\mu_{\gamma\gamma}(m_H)$ and $\mu_{\ell\ell}(m_H)$ are treated as nuisance parameters to avoid making assumptions on the SM Higgs couplings

Result

 $m_{\rm H} = 125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)}$ GeV

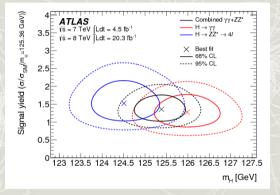


Figure: Likelihood contours $-2ln\Lambda(S, m_H)$ as a function of strength μ and m_H for the H $\rightarrow \gamma\gamma$ and H $\rightarrow ZZ^* \rightarrow 4\ell$ channels and their combination, including all systematic uncertainties.

Production, decay and coupling strengths

- Signal strengths and coupling combinations are done using the $\gamma\gamma$, ZZ*, WW, $\tau\tau$, $b\overline{b}$, $\mu\mu$ and Z γ
- Table below (and following) describe each decay channel, with categorization aiming to identify production process
- Signal strength from individual analyses (before combination)
- Significances observed for 7 TeV (8TeV) and check marks if category used for each data taking
- Both, H $\rightarrow \gamma\gamma$ and H $\rightarrow ZZ^* \rightarrow 4\ell$ target ggF, VBF and VH production. ttH production only addressed by H $\rightarrow \gamma\gamma$

Analysis	ç	Signal	$\int \mathcal{L} dt$	$({\rm fb}^{-1})$
Categorisation or final states	Strength	Significance $[\sigma]$	$7 { m TeV}$	$8 { m TeV}$
$H \to \gamma \gamma \ [12]$	1.17 ± 0.27	5.2(4.6)	4.5	20.3
ttH: leptonic, hadronic			\checkmark	\checkmark
VH : one-lepton, dilepton, $E_{\rm T}^{\rm miss}$,	hadronic		\checkmark	\checkmark
VBF: tight, loose			\checkmark	\checkmark
ggF: 4 $p_{\rm Tt}$ categories			\checkmark	\checkmark
$H \to ZZ^* \to 4\ell \ [13]$	$1.44_{-0.33}^{+0.40}$	8.1(6.2)	4.5	20.3
VBF			\checkmark	\checkmark
VH: hadronic, leptonic			\checkmark	\checkmark
ggF			√	\checkmark

$extsf{H} ightarrow extsf{W} W^*$

- $H \rightarrow WW^*$ analysis targets the ggF, VBF, and VH production modes.
- Candidates are categorised according to the number of jets, number of leptons and lepton flavours.
 - ggF 0, 1 or \leq 2 Jets (latter only different flavour leptons, only), combined fit to the transverse mass of dilepton plus E_r^{miss}
 - $\mathsf{VBF} \leq$ 2 Jets, same and different lepton flavour. BDT combining rapidity separation and mass of leading jets
 - VH Different lepton multiplicities and/or E_T^{miss} , depending on the targeted decay of the vector bosons. Events with b-jet vetoed.

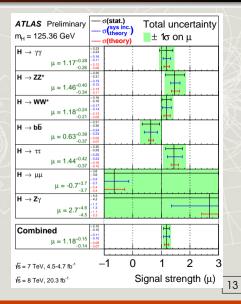
Analysis	Signal		$\int \mathcal{L} dt$	$\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$	
Categorisation or final states	Strength	Significance $[\sigma]$	$7 { m TeV}$	$8 { m TeV}$	
$H \rightarrow WW^*$ [14,15]	$1.16\substack{+0.24\\-0.21}$	6.5(5.9)	4.5	20.3	
ggF: (0-jet, 1-jet) \otimes ($ee + \mu\mu$, $e\mu$)				\checkmark	
$ggF: \ge 2$ -jet and $e\mu$				\checkmark	
$ ext{VBF:} \geq 2 ext{-jet} \otimes (ee + \mu\mu, \ e\mu)$				\checkmark	
VH: opposite-charge dilepton, three-lepton, four-lepton				\checkmark	
VH: same-charge dilepton				\checkmark	

 Although all production channels studied on both 7 TeV and 8 TeV data, not all categories defined in 7 TeV analysis.

$H \rightarrow \tau \tau$ and VH, $H \rightarrow b\overline{b}$

- The H $\rightarrow \tau \tau$ considers both the leptonic and hadronic τ decay.
 - ggF Boosted production, defined as $H_{P_T} > 100$ GeV.
 - VBF Requires two separated additional jets. BDT implemented to discriminate signal from background
- The H→bb is analyzed only in the VH production, as inclusive search not possible due overwhelming background from multijet production
- VH search is performed for events containing 0, 1 or 2 l, b-tagging, and different Jet multiplicity categories
- An maximum-likelihood fit is performed an all categories simultaneously to extract the signal

Analysis		Signal		$\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$	
Categorisation or final states	Strength	Significance $[\sigma]$	$7 { m TeV}$	$8 { m TeV}$	
$H \to \tau \tau$ [17]	$1.43^{+0.43}_{-0.37}$	4.5(3.4)	4.5	20.3	
Boosted: $\tau_{\text{lep}}\tau_{\text{lep}}, \tau_{\text{lep}}\tau_{\text{had}}, \tau_{\text{had}}\tau_{\text{had}}$				\checkmark	
VBF: $\tau_{\rm lep} \tau_{\rm lep}, \tau_{\rm lep} \tau_{\rm had}, \tau_{\rm had} \tau_{\rm had}$			\checkmark	\checkmark	
$VH \to Vb\bar{b}$ [18]	0.52 ± 0.40	1.4(2.6)	4.7	20.3	
$0\ell \ (ZH \rightarrow \nu\nu bb): \ N_{\rm jet} = 2, 3, \ N_{\rm bt}$	\checkmark	\checkmark			
$1\ell \ (WH \to \ell \nu bb): \ N_{\rm jet} = 2, 3, \ N_{\rm bb}$	\checkmark	\checkmark			
$2\ell \ (ZH \to \ell\ell bb)$: $N_{\rm jet} = 2, 3, N_{\rm btag} = 1, 2, p_{\rm T}^V > \text{and} < 120 \text{ GeV}$				\checkmark	


Measurement of signal strength

• Hypothesis testing and confidence intervals are based on the $\Lambda(\alpha)$ profile likelihood ratio test statistic.

 $\Lambda(\alpha) = \frac{L(\alpha, \hat{\hat{\theta}}(\alpha))}{L(\hat{\alpha}, \hat{\theta})}$

- Figure shows measurements of μ from a simultaneous fit to all decay channels analysed, for m_H=125.36 GeV.
- Signals corresponding to the same decay channel are combined together.
- The best-fit values \rightarrow vertical lines. The total $\pm 1\sigma$ in GREEN, stat (top), total (middle), and theory (bottom) uncertainties.

Combining all measurements using $\Lambda(\mu)$ Results

Production cross section

- Assuming SM BRs, the production can be probed with signal-strength parameters $\mu_{gg}, \mu_{VBF}, \mu_{VH}$ and μ_{ttH}
- Then SM predictions scaled to these strengths
- The theoretical uncertainties on the SM prod. cross sections are removed
- Remaining theoretical uncertainties related to the modelling of the Higgs production and acceptance of the event selection

Production process	Cross section	[pb] at $\sqrt{s} = 8$ TeV
ggF	23.9 ± 3.6	$\begin{bmatrix} +3.1 & +1.9 & +1.0 \\ -3.1 & -1.6 & -1.0 \end{bmatrix}$
VBF	2.43 ± 0.58	$\begin{bmatrix} +0.50 & +0.27 & +0.19 \\ -0.49 & -0.20 & -0.16 \end{bmatrix}$
VH	1.03 ± 0.53	$\begin{bmatrix} +0.37 & +0.22 & +0.13 \\ -0.36 & -0.20 & -0.06 \end{bmatrix}$
ttH	0.24 ± 0.11	$\begin{bmatrix} +0.07 + 0.08 + 0.01 \\ -0.07 - 0.08 - 0.01 \end{bmatrix}$

Table: Measured cross sections of different Higgs boson production processes at $\sqrt{S} = 8$ TeV for m_H = 125.36 GeV obtained from the signal-strength values

• The resulting total Higgs boson production cross sections at the two energies are

 $\sigma_H(7 \text{ TeV}) = 22.1^{+7.4}_{-6.0} \text{ pb} = 22.1^{+6.7}_{-5.3} (\text{stat.})^{+2.7}_{-2.3} (\text{syst.})^{+1.9}_{-1.4} (\text{theo.}) \text{ pb, and}$

 $\sigma_H(8 \text{ TeV}) = 27.7 \pm 3.7 \text{ pb} = 27.7 \pm 3.0 \text{ (stat.)} {}^{+2.0}_{-1.7} \text{ (syst.)} {}^{+1.2}_{-0.9} \text{ (theo.) pb},$

• To be compared to calculated XS: 17.4 \pm 1.6 at \sqrt{s} = 7 TeV and 22.3 \pm 2.0 at \sqrt{s} = 8 TeV (1).

Boson and fermion-mediated production

- The relative production cross sections of the vector boson and fermion-mediated processes can be tested
- The Higgs boson production processes can be categorised into:

Coupling to Fermions ggF and ttH productions

Coupling to Vector bosons VBF and VH productions

- Deviations from SM can be tested with two signal-strength parameters, $\mu_{ggF+tHH}^f \equiv (\mu_{ggF}^f = \mu_{tHH}^f)$ and $\mu_{VBF+VH}^f \equiv (\mu_{VBF}^f = \mu_{VH}^f)$, for each decay channel f
- SM values for the ratio of ggF and ttH cross sections and the ratio of VBF and VH cross sections are assumed
- The relative production cross sections of the processes mediated by vector bosons and by fermions can be tested using the ratio

 $R = \frac{\mu^{f}_{VBF+VH}}{\mu^{f}_{ggF+tHH}}$

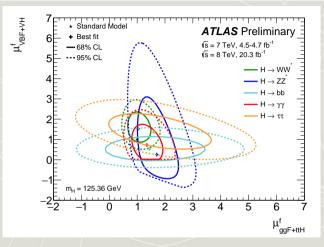


Figure: Likelihood contours in the $(\mu_{ggF+HH}^{\ell}, \mu_{BF+VH}^{\ell})$ plane for a Higgs boson mass m_{H} = 125.36 GeV measured separately for $H \rightarrow WW^*$, $H \rightarrow ZZ^* \rightarrow 4\ell$, $H \rightarrow b\overline{D}$, $H \rightarrow \gamma\gamma$ and $H \rightarrow \tau\tau$.

Combination of ratio: $R_{combined} = 0.96^{+0.43}_{-0.31} = 0.96^{+0.33}_{-0.26}(stat.)^{+0.20}_{-0.13}(syst.)^{0.18}_{-0.10}(theo.).$

Coupling strength fits

- \bullet Production and decay modes cannot be treated independently \rightarrow at least two coupling strengths
- Measurements scale factors *k_j* are implemented for the combination of all analyses (2)
- Using the zero width approximation, cross section $\sigma(i \rightarrow H \rightarrow f)$ becomes

 $\sigma(i \to H \to f) = \frac{\sigma_i(k_j) \cdot \Gamma_f(k_j)}{\Gamma_H(k_i)}$

- for SM, $k_j = 1$, otherwise, $\sigma_j = k_j^2 \sigma^{SM}$
- Deviations from 1 of k_j would change the Higgs width by a factor of: $\Gamma_H(k_j) = k_H^2(k_j) \cdot \Gamma_H^{SM}$
 - Only modifications of coupling strengths are taken into account
 - The channels $H \rightarrow WW^*$, $H \rightarrow ZZ^*$, $H \rightarrow b\overline{D}$, $H \rightarrow \tau\tau$ probe a single coupling-strength scale factor to either a gauge boson or a fermion
 - The channels $H \rightarrow \gamma \gamma$, $H \rightarrow Z \gamma$ probe W and t couplings

2D fit to k_V and k_F

• Assuming only SM contributions to the width (two-parameter benchmark model):

 $k_V = k_Z = k_W$ $k_F = k_t = k_b = k_g = k_\mu$

• As a result of the fit the scale factors obtained: $k_V = 1.09 \pm 0.7 \begin{bmatrix} +0.05 \\ -0.05 \end{bmatrix} (stat.) \begin{bmatrix} +0.03 \\ -0.03 \end{bmatrix} (syst.) \begin{bmatrix} +0.04 \\ -0.04 \end{bmatrix} (syst$

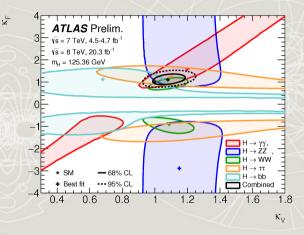


Figure: Results of fits for the two-parameter benchmark model, probing coupling-strength scale factors for fermions and vector bosons, assuming only SM contributions to the total width.

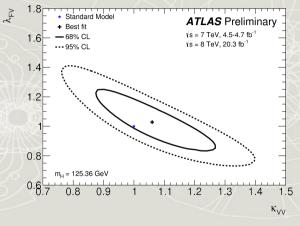
No assumption on the width

- As the total width is dominated by b, τ and gluon-decay widths \rightarrow strong constrain on fermion coupling strength
- Another test was using no assumption on the total width of the Higgs Boson.
- Only ratios of coupling-strengths can be measured, chosen as free parameters of the fit:

$$\lambda_{FV} = k_F/k_V$$
$$k_{VV} = k_V \cdot k_V/k_F$$

• As a result of the fit:

$$\begin{split} \lambda_{FV} &= 1.02^{+0.16}_{-0.13} \begin{bmatrix} +0.11 \\ -0.11 \end{bmatrix} (stat.) & +0.08 \\ -0.07 \end{bmatrix} \\ k_{VV} &= 1.07^{+0.14}_{-0.13} \begin{bmatrix} +0.11 \\ +0.11 \end{bmatrix} (stat.) & +0.06 \\ -0.06 (syst.) & +0.04 \\ -0.04 \end{bmatrix} \end{split}$$



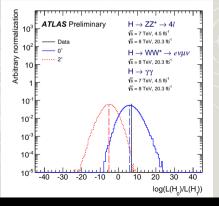


Figure: Results of the two-dimensional fit to k_{VV} and λ_{FV} , including 68% and 95% CL contours.

Spin measurement

- The study of the spin and parity properties of the Higgs boson is based on the $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow WW^* \rightarrow e\nu\mu\nu$
- H $\rightarrow \gamma\gamma$ spin hypothesis is tested via production angle of the two photons, measured in the Collins-Soper frame.

- \bullet H \rightarrow ZZ* \rightarrow 4 ℓ has full kinematic information to determine spin and CP
- H \rightarrow WW* makes use of $m_{\ell\ell}$, $p_T^{\ell\ell}$, $\Delta \phi_{\ell\ell}$ and m_T to test spin hypothesis
- All three channels H $\to \gamma\gamma,$ H $\to ZZ^*$ and H $\to WW^*$ are combined for the spin hypothesis test
- A test statistic *q* used to distinguish between spin-parity hypotheses is a ratio of profiled likelihoods
- Figure shows the distribution of *q* after combination of results from $H \rightarrow ZZ^* \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^*$
- Solid vertical line is the observed value

Summary

- Full analysis of Run1 data taken by ATLAS has been performed
- Detailed study of the properties of the discovered Higgs boson done with Run1 data
- No significant deviation from SM predictions observed
- Data favours Spin0 Higgs hypothesis
- Coupling tests consistent with SM
- Looking forward Run2 data to improve these measurements

Bibliography

S Heinemeyer et al.

Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. 2013.

Georges Aad et al.

Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at $\sqrt{s} = 7$ and 8 TeV in the ATLAS experiment. Technical Report ATLAS-CONF-2015-007, CERN, Geneva, Mar 2015.

Georges Aad et al.

Measurement of the Higgs boson mass from the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels with the ATLAS detector using 25 fb⁻¹ of *pp* collision data. *Phys. Rev.*, D90(5):052004, 2014.

Georges Aad et al.

Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. 2015.