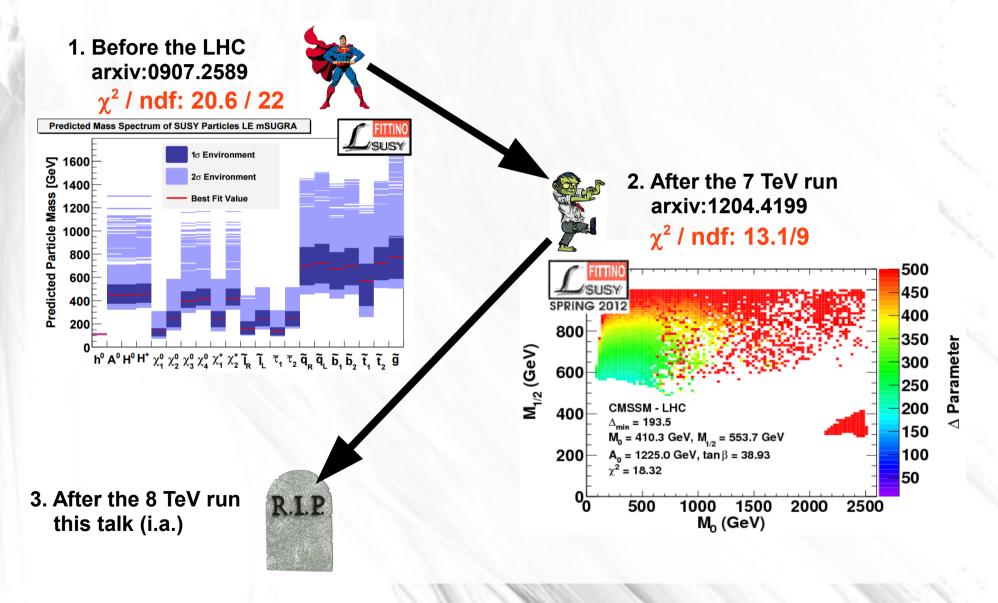
Killing the CMSSM softly


LISHEP Manaus, 04.08.2015

Philip Bechtle, Jose Camargo-Molina, Klaus Desch, Herbi Dreiner, <u>Matthias Hamer</u>, Michael Kraemer, Ben O'Leary, Werner Porod, Björn Sarrazin, Tim Stefaniak, Mathias Uhlenbrock, Peter Wienemann

> Deutsche Forschungsgemeinschaft

> > **DFG**

Introduction – The Evolution of the CMSSM

<u>Outline</u>

The Fittino Framework for Global Fits of SUSY models

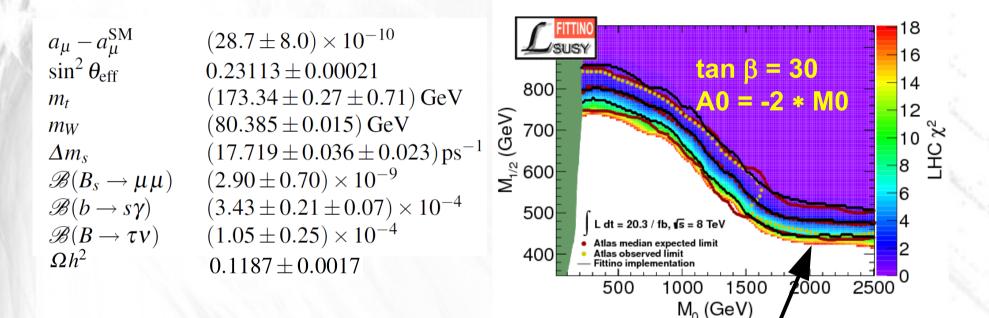
- \rightarrow Observables & Observable Sets
- \rightarrow Scanning and Constraining the Parameter Space

* The CMSSM after the LHC 8 TeV Run

- \rightarrow Best Fit Points & Preferred Parameter Space
- \rightarrow The lightest Higgs in the CMSSM
- \rightarrow The p-Value of the CMSSM

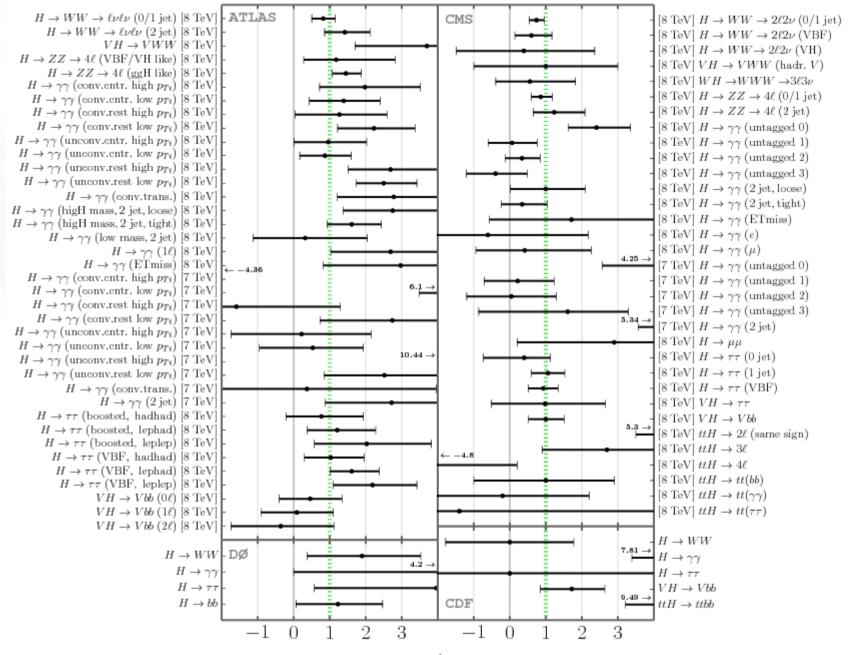
The Fittino Framework & Outline

* select sensitive observables
 * low energy observables
 * Higgs boson properties
 * collider searches for sparticle production
 * direct/indirect dark matter searches


- ★ scan the parameter space
 - public codes for calculation of model predictions
 - $\star \chi^2$ as a measure for level of agreement
 - Markov Chain Monte Carlo for smart sampling

* statistical analysis

- ★ frequentist interpretation
- * preferred parameter regions and mass spectrum
- * calculation of p-value with pseudo experiments


Observables

limits on

- \rightarrow direct detection cross-section (LUX)
- \rightarrow chargino mass from LEP
- \rightarrow SUSY production at the LHC
- a lot of Higgs measurements
- \rightarrow implemented via HiggsSignals and HiggsBounds

correction in A0 and tan β via scaling factor

ĥ

Higgs Observables Set

* CMSSM can't distinguish between all measurements

★ use 3 additional combinations

Experiment, Channel	observed μ	observed m_h
ATLAS, $h \to WW \to \ell \nu \ell \nu$ [80]	$0.99\substack{+0.31\\-0.28}$	-
ATLAS, $h \rightarrow ZZ \rightarrow 4\ell$ [80]	$1.43\substack{+0.40\\-0.35}$	$(124.3\pm1.1)\text{GeV}$
ATLAS, $h \rightarrow \gamma \gamma$ [80]	$1.55\substack{+0.33 \\ -0.28}$	$(126.8 \pm 0.9){ m GeV}$
ATLAS, $h \rightarrow \tau \tau [81]$	$1.44\substack{+0.51\\-0.43}$	-
ATLAS, $Vh \rightarrow V(bb)$ [82]	$0.17\substack{+0.67 \\ -0.63}$	-
CMS, $h \rightarrow WW \rightarrow \ell \nu \ell \nu$ [83]	$0.72\substack{+0.20\\-0.18}$	-
CMS, $h \rightarrow ZZ \rightarrow 4\ell$ [84]	$0.93\substack{+0.29\\-0.25}$	$(125.6 \pm 0.6) \mathrm{GeV}$
CMS, $h \rightarrow \gamma \gamma$ [85]	$0.77\substack{+0.30 \\ -0.27}$	$(125.4 \pm 1.1){ m GeV}$
CMS, $h \rightarrow \tau \tau$ [86]	$0.78\substack{+0.27\\-0.27}$	-
$\mathbf{CMS}, Vh \to V(\overline{bb}) \ [86]$	$1.00\substack{+0.50\\-0.50}$	-

Medium Obs Set

 \rightarrow Baseline

Experiment, Channel	observed μ	observed m_h
ATLAS, $h \rightarrow WW, ZZ, \gamma\gamma$ [80]	$1.33_{-0.18}^{+0.21}$	$(125.5 \pm 0.8) \text{GeV}$
ATLAS, $h \rightarrow \tau \tau$ [81]	$1.44\substack{+0.51\\-0.43}$	-
ATLAS, $Vh \rightarrow V(\overline{bb})$ [82]	$0.17\substack{+0.67 \\ -0.63}$	-
CMS, $h \rightarrow WW, ZZ, \gamma \gamma^{\dagger}$	$0.80\substack{+0.16\\-0.15}$	$(125.7 \pm 0.6) \text{GeV}$
CMS, $h ightarrow au au$ [86]	$0.78\substack{+0.27\\-0.27}$	-
CMS, $Vh \rightarrow V(bb)$ [86]	$1.00\substack{+0.50 \\ -0.50}$	-

Small Obs Set

Experiment, Channel	observed μ	observed m_h
ATLAS+CMS, $h \rightarrow WW, ZZ$ ATLAS+CMS, $h \rightarrow \gamma\gamma$	$\begin{array}{c} 0.94\substack{+0.17\\-0.16}\\ 1.16\substack{+0.22\\-0.20}\end{array}$	$(125.73 \pm 0.45)\mathrm{GeV}$
ATLAS+CMS, $h \rightarrow \tau \tau$	$1.11^{+0.24}_{-0.23}$	-
ATLAS+CMS, Vh , $tth \rightarrow bb$	$0.69\substack{+0.37\\-0.37}$	-

Combined Obs Set

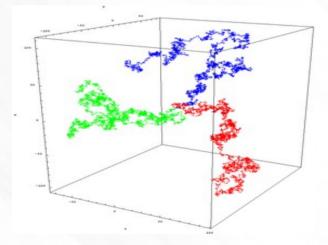
Calculating Model Predictions

★ Fittino uses

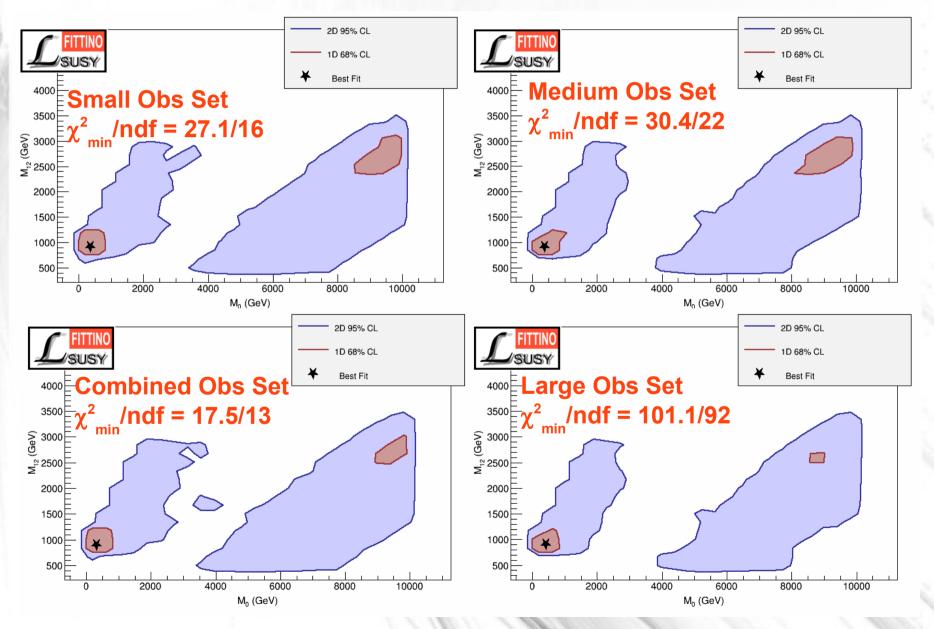
- \rightarrow SPheno for the mass Spectrum
- \rightarrow **SuperIso** for the B-meson branching fractions
- \rightarrow FeynHiggs for Higgs properties, m_w, sin θ_{eff} , (g-2)
- \rightarrow micrOMEGAs for Ωh^2
- \rightarrow **DarkSUSY** via AstroFit for direct detection cross section
- → Herwig++/Delphes/Prospino for the emulation of the ATLAS 0-Lepton search

Sampling the Parameter Space

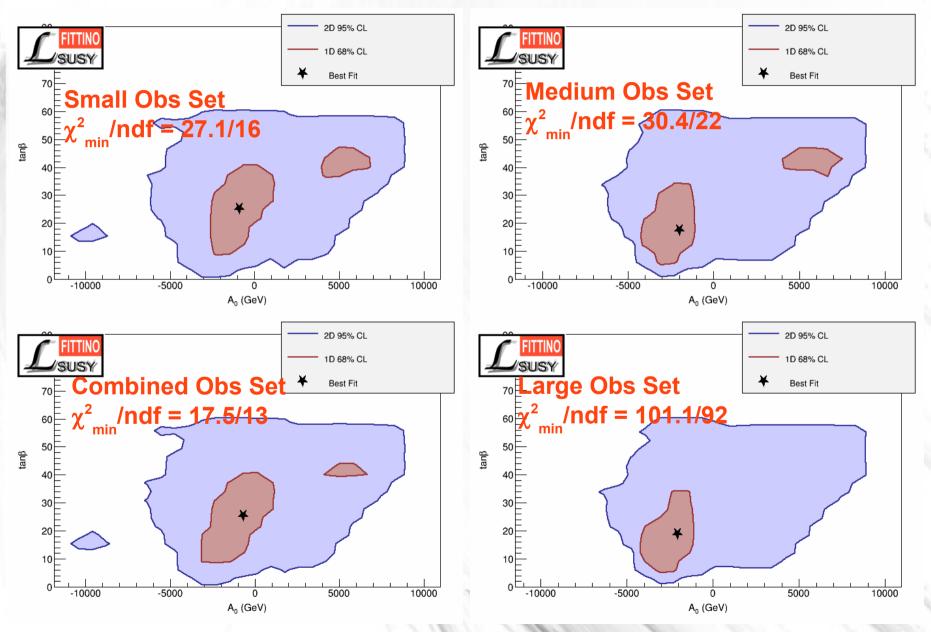
🛪 3 goals

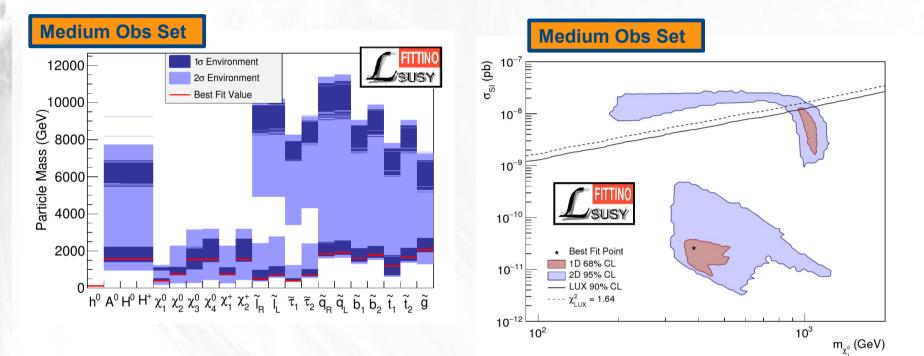

 \rightarrow accurate determination of best fit point

- \rightarrow extensive coverage of full parameter space
- \rightarrow accurate evaluation of p-value

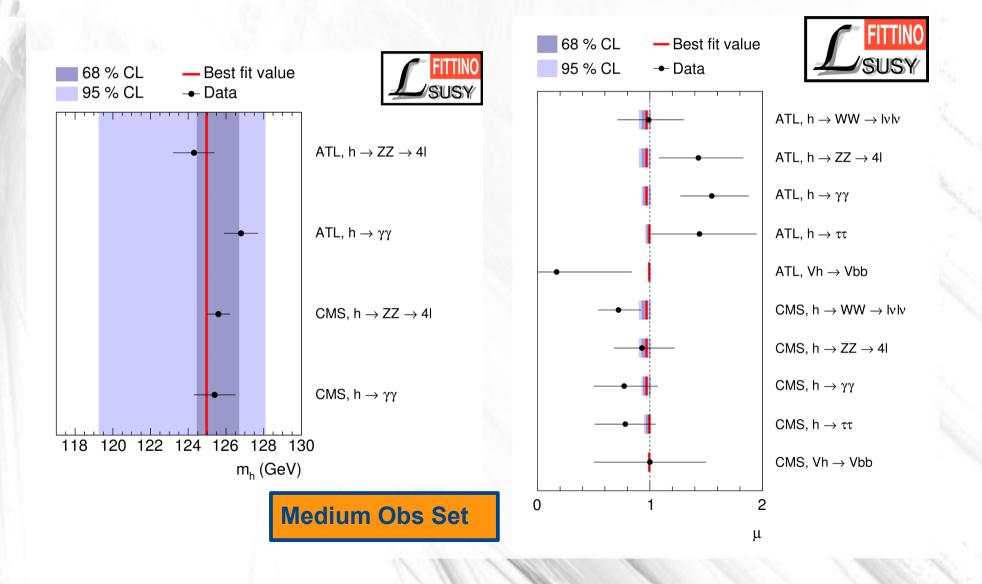

* adaptive Markov Chain Monte Carlo

- \rightarrow proposal densities adjusted regularly
- \rightarrow 20 independent chains
- \rightarrow 850 million valid points
- \rightarrow 100 million points with χ^2 < 100
- ★ determination of p-Value
 - \rightarrow full fit too demanding in terms of CPU time
 - \rightarrow use original MCMC to find best fit points

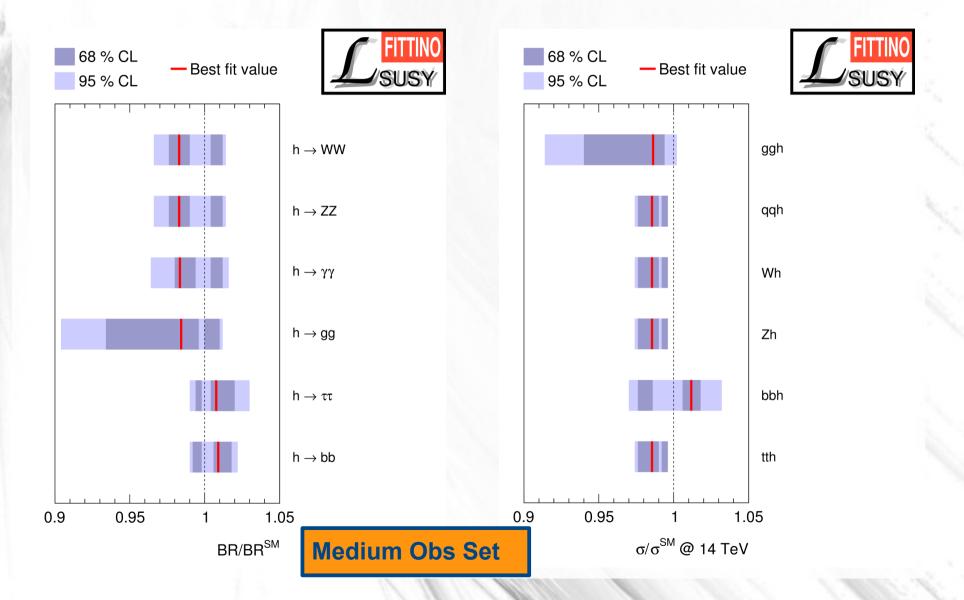

 \rightarrow conservative estimation of model p-value


Results I: Parameter Regions & Best Fit Points

Results I: Parameter Regions & Best Fit Points



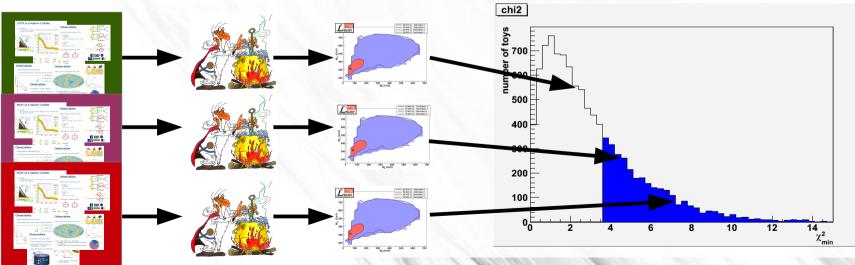
Results I: Parameter Regions & Best Fit Points



Observable Set	M_0	$M_{1/2}$	A_0	$\tan eta$
Combined	$327.4 \mathrm{GeV}$	$900.5 \mathrm{GeV}$	-679.6 GeV	25.6
Small	$361.5~{ m GeV}$	$926.3~{ m GeV}$	$-907.9 { m ~GeV}$	25.3
Medium	$387.4 \mathrm{GeV}$	$918.2~{ m GeV}$	-2002.8 GeV	17.7
Large	$418.6~{\rm GeV}$	$910.6~{ m GeV}$	$-2041.6 { m ~GeV}$	19.2

Results II: Lightest Higgs in the CMSSM

Results II: Lightest Higgs in the CMSSM



☆ non-gaussian observable set

- \rightarrow 1-sided and hard limits
- \rightarrow non-gaussian uncertainties
- \rightarrow relative uncertainties
- \rightarrow highly non-linear model

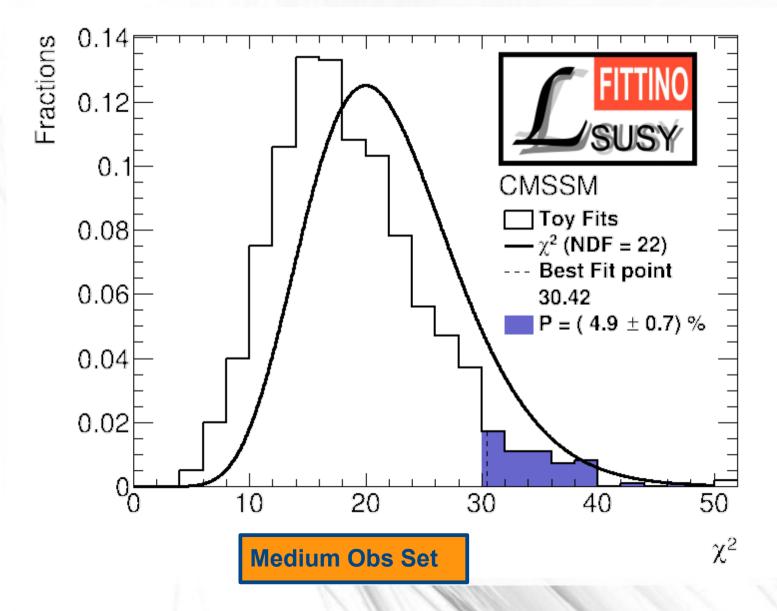
 $P_n(\chi^2) = \frac{(\chi^2)^{\frac{n}{2}} \cdot e^{\frac{\chi^2}{2}}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}$

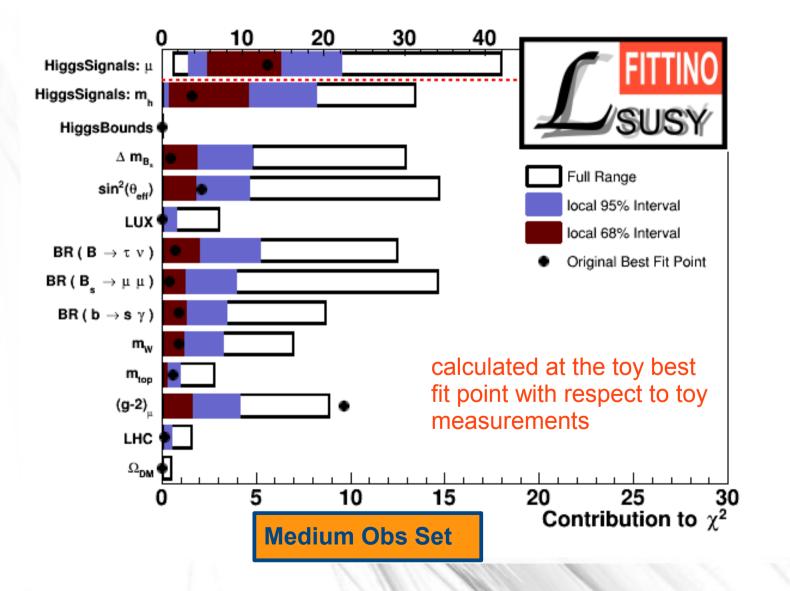
- * gaussian χ^2 -distribution accurate?
 - \rightarrow get true χ^2 -distribution from pseudo measurements
 - \rightarrow ~1000 pseudo datasets per obs set

★ Large Obs Set: 84 different measurements in Higgs sector
 → CMSSM makes the same prediction for several subsets

★ in terms of the p-value, the model can be

- \rightarrow punished for bad agreement within the data
- \rightarrow rewarded for good agreement within the data


* p-value should reflect the quality of the model


\rightarrow combine measurements with same prediction

 \rightarrow use combination in global fit

medium obs set comes closest to what we need

Experiment, Channel	observed μ	observed m_h
ATLAS, $h \to WW \to \ell \nu \ell \nu$ [80]	$0.99\substack{+0.31\\-0.28}$	-
ATLAS, $h \rightarrow ZZ \longrightarrow 4\ell$ [80]	$1.43\substack{+0.40\\-0.35}$	$(124.3\pm1.1)\text{GeV}$
ATLAS, $h \rightarrow \gamma \gamma$ [80]	$1.55\substack{+0.33 \\ -0.28}$	$(126.8 \pm 0.9) \text{GeV}$
ATLAS, $h \rightarrow \tau \tau$ [81]	$1.44\substack{+0.51\\-0.43}$	-
ATLAS, $Vh \rightarrow V(\overline{bb})$ [82]	$0.17\substack{+0.67 \\ -0.63}$	-
CMS, $h \rightarrow WW \rightarrow \ell \nu \ell \nu$ [83]	$0.72\substack{+0.20\\-0.18}$	-
CMS, $h \rightarrow ZZ \rightarrow 4\ell$ [84]	$0.93\substack{+0.29\\-0.25}$	$(125.6 \pm 0.6) \mathrm{GeV}$
CMS, $h \rightarrow \gamma \gamma$ [85]	$0.77\substack{+0.30 \\ -0.27}$	$(125.4\pm1.1)\text{GeV}$
CMS, $h ightarrow au au$ [86]	$0.78\substack{+0.27\\-0.27}$	-
$CMS, Vh \to V(\overline{bb}) [86]$	$1.00\substack{+0.50 \\ -0.50}$	-

	Observable Set	$\chi^2/$ n.d.f	naive p-value	toy p-value	stat. uncert.
	Combined	17.5/13	17.7%	8.3%	0.8%
	Small	27.1/16	4.0%	1.9%	0.4%
<	Medium	30.4/22	10.8%	4.9%	0.7%
	Large	101.1/92	24.3%	41.6%	4.4%
	Medium / g-2	18.1/21	64.1%	51%	3%

- \rightarrow naive p-value: p-value according to gaussian χ^2 -distribution
- \rightarrow toy p-value: p-value extracted from pseudo experiments
- \rightarrow stat.uncertainty: estimated uncertainty on p-value

$$\Delta p = \sqrt{\frac{p \cdot (1-p)}{n_{\text{Toy}}}}$$

Summary

★ global fit of CMSSM with updated observables

- \rightarrow low energy measurements
- \rightarrow measurements from cosmology/astrophysics
- \rightarrow results of direct searches
- \rightarrow Higgs observables
- LHC limits push the CMSSM to a region in which it can no longer accomodate (g-2)

* accurate determination of the p-value requires pseudo experiments

★ p-value depends strongly on the choice of the observable set
 → combination of measurements with identical predictions crucial

* we exclude the CMSSM at the 95% CL with the optimal observable set