Forward and Small-x QCD Physics with CMS

A. Vilela Pereira on behalf of the CMS Collaboration Universidade do Estado do Rio de Janeiro

Forward \& Low-x Physics

Forward \& Low-x Physics

The understanding of proton-proton collisions depends on a wide range of phenomena which manifest themselves by looking at low transverse momentum, or forward rapidities:

Small-x QCD
Underlying event, MPI \& DPS
Soft and hard diffraction, exclusive processses, $\gamma\rangle$ interactions, etc.
In this presentation some selected results on these subjects from the CMS collaboration will be shown.

For a full list of results and publications see:
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

Forward \& Low-x Physics

The understanding of proton-proton collisions depends on a wide range of phenomena which manifest themselves by looking at low transverse momentum, or forward rapidities:

Small-x QCD
Underlying event, MPI \& DPS
Soft and hard diffraction, exclusive processses, $\gamma\rangle$ interactions, etc.
In this presentation some selected results on these subjects from the CMS collaboration will be shown.

For a full list of results and publications see:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

See D. Damião's talk for results on diffractive and exclusive physics.

Outline

The CMS detector and forward instrumentation
Underlying évent in pp collisions and DPS
Low-x jet production
Forward energy flow \& particle production and inelastic cross section

The CMS detector

Large Hadron Collider 27 km circumference

The CMS detector

The CMS detector

CMS Detector

Pixels
Tracker ECAL HCAL
Solenoid Steel Yoke Muons

STEEL RETURN YOKE
~13000 tonnes

ZERO-DEGREE
CALORIMETER

Total weight Overall diameter Overall length Magnetic field
: 14000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

SILICON TRACKER
Pixels ($100 \times 150 \mu^{2}$)
$\sim 1 \mathrm{~m}^{2} \quad 66 \mathrm{M}$ channels
Microstrips (50-100um)

HADRON CALORIMETER (HCAL)
Brass + plastic scintillator

MUON CHAMBERS

Barrel: 250 Drift Tube \& 500 Resistive Plate Chambers Endcaps: 450 Cathode Strip \& 400 Resistive Plate Chambers

Forward detectors at CMS

Detector configuration during 2010-201I

Hadronic Forward (HF)
140 m

ZDC
($|\eta|>8.1$)
$(5.2<|\eta|<6.6)$

CASTOR
W-absorbers/quartz plates I2 longitudinal modules/l6 azimuthal sectors

CMS

Hadronic
Forward (HF)

$$
(3.0<|\eta|<5.0) \quad 140 \mathrm{~m}
$$

CMS Detector

CMS-TOTEM detectors

Outline

The CMS detector and forward instrumentation
Underlying évent in pp collisions and DPS
Low-x jet production
Forward energy flow \& particle production and inelastic cross section

Underlying Event in pp collisions

Underlying Event in pp collisions

T. Sjostrand

Underlying Event in pp collisions

Underlying Event in pp collisions

Underlying Event in pp collisions

Underlying Event (0.9, 2.76, 7 TeV)

Charged particle and p_{T} sum density in transverse region to highest $\mathrm{pt}_{\text {j jet well described by PYTHIA \& HERWIG tunes. }}^{\text {Hes }}$

Good description of energy dependence.

Underlying Event, MPI and DPS

Underlying Event, MPI and DPS

Underlying Event, MPI and DPS

Double Parton Scattering: W + jets

Single Parton Scattering (SPS)

Double Parton Scattering (DPS)

Predictions both at LO and NLO without MPI cannot describe the data.
PYTHIA8 does not account for hiaher order contributions.

$$
\begin{aligned}
& \Delta^{\mathrm{rel}} \mathrm{p}_{\mathrm{T}}=\frac{\left|\vec{p}_{T}(j 1)+\vec{p}_{T}(j 2)\right|}{\left|\vec{p}_{T}(j 1)\right|+\left|\vec{p}_{T}(j 2)\right|} \\
& \Delta S=\arccos \left(\frac{\vec{P}_{T}\left(\mu, \mathbb{E}_{\mathrm{T}}\right) \cdot \vec{P}_{T}(j 1, j 2)}{\left|\vec{P}_{T}\left(\mu, \mathbb{E}_{\mathrm{T}}\right)\right| \cdot\left|\vec{P}_{T}(j 1, j 2)\right|}\right)
\end{aligned}
$$

CMS PAS FSQ-12-028

Double Parton Scattering: W + jets

Single Parton Scattering (SPS)

2 b-jets +2 jets production and DPS

At least 4 jets with $\mathrm{p}_{\mathrm{T}}>$ 20 GeV (2 leading b-jets with $|n|<2.4$ and 2 lights-jets with $|n|<4.7$); Predictions are in general able to describe well jet spectra, besides Herwig++;
$3 \mathrm{pb}^{-1}(7 \mathrm{TeV}), \mathrm{pp} \rightarrow 2 \mathrm{~b}+2 \mathrm{j}+\mathrm{X}$

CMS PAS FSQ-13-010

2 b-jets +2 jets production and DPS

At least 4 jets with $\mathrm{p}_{\mathrm{T}}>$ 20 GeV (2 leading b-jets with $|n|<2.4$ and 2 lights-jets with $|n|<4.7$); Predictions are in general able to describe well jet spectra, besides Herwig++;
Distributions of correlation observables not fully described by any of the theoretical models (simulation of UE tuned to soft MPI).

CMS PAS FSQ-13-010

DPS: $\gamma+3$ jets

QCD $\gamma+3$ jets, Double Bremsstrahlung
Double Parton Scaeeering

CMS PAS FSQ-12-017

DPS: $\gamma+3$ jets

$Y+1$ jet in central
region with $p_{T}>75 \mathrm{GeV}$
and 2 jets with $\mathrm{p}_{\mathrm{T}}>20$
GeV ;
Data overall well
described by different
models;
Measurement not very
sensitive to MPI (note
high pT cuts). $^{\text {and }}$

Outline

The CMS detector and forward instrumentation
Underlying évent in pp collisions and DPS
Low-x jet production
Forward energy flow \& particle production and inelastic cross section

Low-рт and forward iets

LHC parton kinematics

Low-x region can be accessed with low-pt or very forward jets;
Test of perturbative QCD evolution (DGLAP vs BFKL dynamics);

Low-рт and forward jets

Low-x region can be accessed with low-pt or very forward jets;
Test of perturbative QCD evolution (DGLAP vs BFKL dynamics);
Inclusive jet production cross section at rapidities $|\mathrm{y}|<4.7$ with $21<\mathrm{p}_{\mathrm{T}}<$ 74 GeV (Anti-kt, R = 0.7 jets), combined with high-рт measurements.

Forward-central jet correlations

Azimuthal correlations between forward (3.2 $<\eta<4.7$) and central ($|\eta|<2.8$) jets with p_{T} $>35 \mathrm{GeV}$;
Jets with large rapidity separation;
Topologies with extra jet and vetoing extra jet between central/forward jets.

DGLAP-based MC predictions are able to describe observables considered;
When MPI is turned off correlations are worse.

CMS PAS FSQ-I2-008

Forward-central jet correlations

Azimuthal correlations between forward (3.2 $<\eta<4.7$) and central ($|\eta|<2.8$) jets with p_{T} $>35 \mathrm{GeV}$;
Jets with large rapidity separation;
Topologies with extra jet and vetoing extra jet between central/forward jets.

DGLAP-based MC predictions are able to describe observables considered;
When MPI is turned off correlations are worse.

See also:
Azimuthal angle decorrelations of jets widely separated in rapidity in pp collisions at $\sqrt{ } s=7 \mathrm{TeV}$
CMS-PAS-FSQ-12-002
Dijet production with a large rapidity gap between the jets CMS-PAS-FSQ-12-001

CMS PAS FSQ-12-008

Leading charged particles/jets at small P_{T}

Leading charged particles ($|\eta|<2.4, \mathrm{p}_{\boldsymbol{T}}>0.8 \mathrm{GeV}$) and leading chargeparticle jets ($|\eta|<1.9$, $\mathrm{p}_{\boldsymbol{T}}>1.0 \mathrm{GeV}$);
Transition from perturbative to non-perturbative region. Saturation of partonparton cross section visible at p_{T} values of $\mathrm{O}(1 \mathrm{GeV})$.

Outline

The CMS detector and forward instrumentation
Underlying évent in pp.collisions and DPS
Low-x jet production
Forward energy flow \& particle production and inelastic cross section

$\mathrm{dE} / \mathrm{dn}$ and cosmic rays

Regge-based Monte Carlo generators for cosmic ray (proton) interactions in the atmosphere (EPOS, QGSJET, SIBYLL);
LHC data important for model extrapolations to ultra high energies;

Good agreement with $\mathrm{dE} / \mathrm{d} \mathrm{\eta}$ data.

Total inelastic cross section

CMS FWD-II-001
CMS OCD-II-002
Phys. Lett. B 722 (2013) 5-27

HF based: count events within acceptance:

Vertex based: count extra vertices (pile-up):

Inelastic pPb cross section (5.02 TeV)

CMS PAS FSQ-13-006

$d N_{\text {ch }} / d \eta$ in central + forward region

CMS PAS FSQ-I2-026
Eur. Phys. J. C 74 (2014) 3053

LISHEP 2015 - A. Vilela Pereira

dN $\mathrm{ch} / \mathrm{d} \mathrm{\eta}$ in central + forward region

CMS PAS FSQ-I2-026
Eur. Phys. J. C 74 (2014) 3053

$\mathrm{dN} / \mathrm{dn}$ of charged hadrons at 13 TeV

Charged hadron pseudorapidity density in inelastic pp collisions at 13 TeV ;
Central value: 5.49 ± 0.01 (stat.) ± 0.17 (syst.);
First LHC paper at 13 TeV .

Summary

CMS has a unique forward detector instrumentation, especially complemented by the TOTEM experiment.

Joint physics programme with TOTEM at high luminosity (See João Varela's talk on CT-PPS).

Total inelastic cross section measured in pp and pPb:
Underlying event measured at different collision energies and well modelled.
Double Parton Scattering studied at different topologies ($W+$ jets, 4 jets, 2 bjets +2 jets, $\gamma+3$ jets).

New kinematic regions of QCD explored using forward and low-pt final states (MPI, DGLAP vs BFKL dynamics, non-perturbative domain, etc.).

Connection with cosmic ray physics and models studied.
First paper at 13 TeV : $\mathrm{dN} / \mathrm{dn}$ of charged hadrons.

Extra slides

CMS Tune CUETP8S1-CTEQ6L

\Rightarrow PYTHIA 8 Tunes: Corke \& Sjöstrand Tune 4C-CTEQ6L and CMS Tune CUETP8S1-CTEQ6L (CMS1).

	4C	CMS1
PDF	CTEQ6L	CTEQ6L
ecmRef	1800	1800
pT0Ref	2.085	2.1006
ecmPow	0.19	$\mathbf{0 . 2 1 0 5 7}$
expPow	2.0	1.60889
reconnectRange	1.5	3.31257
MultipartonInteractions:alphaSvalue	0.135	0.135
SigmaProcess:alphaSvalue	0.135	0.135
SpaceShower:alphaSvalue	0.137	0.137
TimeShower:alphaSvalue	0.1383	0.1383
TimeShower:pTmin	0.4	0.4
TimeShower:pTminChgQ	0.4	0.4
BeamRemnants:halfScaleForKT	1.0	1.0
BeamRemnants:primordialKThard	2.0	2.0
BeamRemnants:primordialKTsoft	0.50	0.50
Tune:ee	3	3

pTO $\left(E_{c m}\right)=$ pTORef $\times\left(E_{c m} / \text { ecmRef }\right)^{\text {ecmPow }}$

Underlying Event in pp collisions

MPI, ISR/FSR, hadronisation, colour reconnections, beam remnants, soft rescattering of beam remnants etc...

4 jet production

2 hard jets with PT $^{\text {> }}$ 50 GeV and two soft jets with $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$ ($|n|<4.7$);
Discrepancies with some predictions (e.g. PYTHIA8 Tune 4C, MadGraph + PY6 Z2*), especially at low pт;

50100150200250300350400450500
Jet $p_{T}(G e V)$

CMS PAS FSQ-12-013

4 jet production

2 hard jets with $\mathrm{p}_{\mathrm{T}}>$ 50 GeV and two soft jets with $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$ ($|n|<4.7$);
Discrepancies with some predictions (e.g. PYTHIA8 Tune 4C, MadGraph + PY6 Z2*), especially at low pt;
Models (including MPI) agree only in some regions if the phase space;
Possible indication of the need of DPS in the models.

$\Delta \phi_{\text {soft }}=\left|\phi\left(\mathrm{j}^{\text {soft }_{1}}\right)-\phi\left(\mathrm{j}^{\text {soft }}\right)\right| ;$
$\Delta_{\text {soft }}^{\text {rel }} p_{\mathrm{T}}=\frac{\left|\vec{p}_{\mathrm{T}}\left(\mathrm{j}^{\text {soft }}\right)+\vec{p}_{\mathrm{T}}\left(\mathrm{j}^{\text {soft }}\right)\right|}{\left|\vec{p}_{\mathrm{T}}\left(\mathrm{j}^{\text {soft }}\right)\right|+\left|\vec{p}_{\mathrm{T}}\left(\mathrm{j}^{\text {joft }}\right)\right|} ;$

CMS PAS FSQ-12-013

Leading charged particles/jets at small рт $^{\text {T }}$

Leading charged particles/jets at small рт $^{\text {T }}$

dN $\mathrm{ch} / \mathrm{d} \mathrm{\eta}$ in central + forward region

CMS PAS FSQ-I2-026
Eur. Phys. J. C 74 (2014) 3053

dN ch/dn at 13 TeV (tracklets)

dNoh/dn at 13 TeV (tracks)

Forward energy flow

Energy flow in the forward region particularly sensitive to the underlying event (UE) dynamics

Important input in the tuning of multi-parton interactions (MPI) models at the LHC

Measurement of the forward energy flow (dE/ $\mathrm{d} \eta$) in minimum bias and dijet events

Performed in the range covered by the HF calorimeter ($3<|\eta|<5$)
$\sqrt{ }$ s dependence from results at both 0.9 and 7 TeV

Total inelastic cross section

Additional (pile-up) interactions in a bunch crossing give an unbiased source of inelastic events

Probability follows a Poisson distribution that depends on the bunch luminosity and total cross section:

$$
P(n)=\frac{(L \sigma)^{n}}{n!} \exp ^{-L \sigma}
$$

From the number of extra interactions versus luminosity the total (visible) cross section can be extracted

Total inelastic cross section

Minimum number of (2) charged particles is roughly equivalent to a cut-off at $\xi \sim$ 6. 0^{-5}

MC dependent extrapolation to total inelastic cross section

Total inelastic cross section

Phys. Rev. Lett. I09, 062002 (2012)

