Forward and Small-x QCD Physics with CMS

A. Vilela Pereira on behalf of the CMS Collaboration Universidade do Estado do Rio de Janeiro

LISHEP 2015 - Manaus - Brazil 2-8 August 2015

Forward & Low-x Physics

Forward & Low-x Physics

The understanding of proton-proton collisions depends on a wide range of phenomena which manifest themselves by looking at low transverse momentum, or forward rapidities:

Small-x QCD

Underlying event, MPI & DPS

Soft and hard diffraction, exclusive processes, yy interactions, etc.

In this presentation some selected results on these subjects from the CMS collaboration will be shown.

For a full list of results and publications see:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

Forward & Low-x Physics

The understanding of proton-proton collisions depends on a wide range of phenomena which manifest themselves by looking at low transverse momentum, or forward rapidities:

Small-x QCD

Underlying event, MPI & DPS

Soft and hard diffraction, exclusive processes, yy interactions, etc.

In this presentation some selected results on these subjects from the CMS collaboration will be shown.

For a full list of results and publications see:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

See D. Damião's talk for results on diffractive and exclusive physics.

Outline

- The CMS detector and forward instrumentation
- Underlying event in pp collisions and DPS
- Low-x jet production
- Forward energy flow & particle production and inelastic cross section

The CMS detector

The CMS detector

The CMS detector

Forward detectors at CMS

LISHEP 2015 - A. Vilela Pereira

Outline

The CMS detector and forward instrumentation

Underlying event in pp collisions and DPS

Low-x jet production

Forward energy flow & particle production and inelastic cross section

LISHEP 2015 - A. Vilela Pereira

T. Sjostrand

LISHEP 2015 - A. Vilela Pereira

Underlying Event (0.9, 2.76, 7 TeV)

Charged particle and p_T sum density in transverse region to highest p_T jet well described by PYTHIA & HERWIG tunes.

Good description of energy dependence.

LISHEP 2015 - A. Vilela Pereira

PTmax Direction

"Toward'

"Away"

Δφ

Underlying Event, MPI and DPS

Double Parton Scattering: W + jets

Predictions both at LO and NLO without MPI cannot describe the data. PYTHIA8 does not account for higher order contributions. $Ldt = 5 \text{ fb}^{-1}$ CMS $\sqrt{s} = 7 \text{ TeV}$ Nevt d(AS) - PYTHIA8 - MADGRAPH5 + PYTHIA8 MADGRAPH5 + PYTHIA8, no MPI POWHEG2 + PYTHIA6 -... POWHEG2 + PYTHIA6, no MPI Data 0.120.1 p_T(jet) > 20 GeV; lηl < 2.0 0.08 0.06 0.04 0.02È Data / MC Data / MC Uncertainty 16 1.2 **F**. 0.6 ЫN Data / MC Uncertainty Data Data / MC Data / MC Uncertainty 0.8 0.6 0 0.2 0.4 0.6 0.8 $\Delta^{\text{rel}} p_{T}$ CMS PAS FSQ-12-028

LISHEP 2015 - A. Vilela Pereira

Double Parton Scattering: W + jets

LISHEP 2015 - A. Vilela Pereira

J. High Energy Phys. 03 (2014) 032 17

√s [TeV]

45

10

2

3

2 b-jets + 2 jets production and DPS

CMS PAS FSQ-13-010

2 b-jets + 2 jets production and DPS

At least 4 jets with $p_T >$ 20 GeV (2 leading b-jets with $|\eta| < 2.4$ and 2 lights-jets with $|\eta| < 4.7$);

Predictions are in general able to describe well jet spectra, besides Herwig++;

Distributions of correlation observables not fully described by any of the theoretical models (simulation of UE tuned to soft MPI).

DPS: y + 3 jets

<u>CMS PAS FSQ-12-017</u>

DPS: y + 3 jets

 γ + 1 jet in central region with $p_T > 75$ GeV and 2 jets with $p_T > 20$ GeV;

Data overall well described by different models;

Measurement not very sensitive to MPI (note high p_T cuts).

CMS PAS FSQ-12-017

Outline

The CMS detector and forward instrumentation

Underlying event in pp collisions and DPS

Low-x jet production

Forward energy flow & particle production and inelastic cross section

Low-p_T and forward jets

Low-x region can be accessed with low- p_T or very forward jets;

Test of perturbative QCD evolution (DGLAP vs BFKL dynamics);

Low-p_T and forward jets

CMS PAS FSQ-12-031

CMS PAS FSQ-12-008

LISHEP 2015 - A. Vilela Pereira

Leading charged particles/jets at small pT

Leading charged particles ($|\eta| < 2.4$, $p_T > 0.8$ GeV) and leading chargeparticle jets ($|\eta| < 1.9$, $p_T > 1.0$ GeV);

Transition from perturbative to non-perturbative region. Saturation of partonparton cross section visible at p_T values of O(1 GeV).

LISHEP 2015 - A. Vilela Pereira

Outline

- The CMS detector and forward instrumentation
- Underlying event in pp collisions and DPS
- Low-x jet production
- Forward energy flow & particle production and inelastic cross section

dE/dn and cosmic rays

Regge-based Monte Carlo generators for cosmic ray (proton) interactions in the atmosphere (EPOS, QGSJET, SIBYLL);

LHC data important for model extrapolations to ultra high energies;

Good agreement with dE/dŋ data.

Total inelastic cross section

Inelastic pPb cross section (5.02 TeV)

CMS PAS FSQ-13-006

dN_{ch}/dη in central + forward region

$dN_{ch}/d\eta$ in central + forward region

CMS PAS FSQ-12-026 Eur. Phys. J. C 74 (2014) 3053

dN/dŋ of charged hadrons at 13 TeV

Charged hadron pseudorapidity density in inelastic pp collisions at 13 TeV; Central value: 5.49 ± 0.01 (stat.) ± 0.17 (syst.); First LHC paper at 13 TeV.

Summary

CMS has a unique forward detector instrumentation, especially complemented by the TOTEM experiment.

Joint physics programme with TOTEM at high luminosity (See João Varela's talk on CT-PPS).

Total inelastic cross section measured in pp and pPb.

Underlying event measured at different collision energies and well modelled.

Double Parton Scattering studied at different topologies (W+jets, 4 jets, 2 b-jets + 2 jets, γ + 3 jets).

New kinematic regions of QCD explored using forward and low-p_T final states (MPI, DGLAP vs BFKL dynamics, non-perturbative domain, etc.).

Connection with cosmic ray physics and models studied.

First paper at 13 TeV: dN/dŋ of charged hadrons.

Extra slides

PYTHIA 8 Tunes: Corke & Sjöstrand Tune 4C-CTEQ6L and CMS Tune CUETP8S1-CTEQ6L (CMS1).

	4C	CMS1
PDF	CTEQ6L	CTEQ6L
ecmRef	1800	1800
pT0Ref	2.085	2.1006
ecmPow	0.19	0.21057
expPow	2.0	1.60889
reconnectRange	1.5	3.31257
MultipartonInteractions:alphaSvalue	0.135	0.135
SigmaProcess:alphaSvalue	0.135	0.135
SpaceShower:alphaSvalue	0.137	0.137
TimeShower:alphaSvalue	0.1383	0.1383
TimeShower:pTmin	0.4	0.4
TimeShower:pTminChgQ	0.4	0.4
BeamRemnants:halfScaleForKT	1.0	1.0
BeamRemnants:primordialKThard	2.0	2.0
BeamRemnants:primordialKTsoft	0.50	0.50
Tune:ee	3	3

pT0(E_{cm})=pT0Ref × (E_{cm}/ecmRef)^{ecmPow}

Underlying Event in pp collisions

MPI, ISR/FSR, hadronisation, colour reconnections, beam remnants, soft rescattering of beam remnants etc...

4 jet production

2 hard jets with $p_T >$ 50 GeV and two soft jets with $p_T > 20$ GeV ($|\eta| < 4.7$); Discrepancies with some predictions (e.g. PYTHIA8 Tune 4C, MadGraph + PY6 Z2*), especially at low p_T ;

4 jet production

2 hard jets with $p_T >$ 50 GeV and two soft jets with $p_T >$ 20 GeV ($|\eta| < 4.7$);

Discrepancies with some predictions (e.g. PYTHIA8 Tune 4C, MadGraph + PY6 Z2*), especially at low p_T;

Models (including MPI) agree only in some regions if the phase space;

Possible indication of the need of DPS in the models.

LISHEP 2015 - A. Vilela Pereira

Phys. Rev. D 89 (2014) 092010

Leading charged particles/jets at small pT

Leading charged particles/jets at small pT

dN_{ch}/dη in central + forward region

dN_{ch}/dη at 13 TeV (tracklets)

LISHEP 2015 - A. Vilela Pereira

44

$dN_{ch}/d\eta$ at 13 TeV (tracks)

Forward energy flow

Energy flow in the forward region particularly sensitive to the underlying event (UE) dynamics

Important input in the tuning of multi-parton interactions (MPI) models at the LHC

Measurement of the forward energy flow (dE/ dη) in minimum bias and dijet events

Performed in the range covered by the HF calorimeter $(3 < |\eta| < 5)$

 \sqrt{s} dependence from results at both 0.9 and 7 TeV

Total inelastic cross section

Additional (pile-up) interactions in a bunch crossing give an unbiased source of inelastic events

Probability follows a Poisson distribution that depends on the bunch luminosity and total cross section:

$$P(n) = \frac{(L\sigma)^n}{n!} \exp^{-L\sigma}$$

From the number of extra interactions versus luminosity the total (visible) cross section can be extracted

CMS PAS FWD-11-001

Total inelastic cross section

Procedure counts only (extra) events for which a vertex is _____ reconstructed

Correct for the inelastic cross section for events with a minimum number of charged particles in the central region ($p_T > 200$ MeV, $|\eta| < 2.4$)

Minimum number of (2) charged particles is roughly equivalent to a cut-off at $\xi \sim 6.10^{-5}$

MC dependent extrapolation to total inelastic cross section

CMS PAS FWD-11-001

Total inelastic cross section

