Review of recent LHCb results

A.Hicheur
(Universidade Federal do Rio de Janeiro)
LISHEP 2015, Manaus, Amazonas 02-08/08/2015

laboratório de partículas elementares
Universidade Federal do Rio de Janeiro

Outline

- LHCb experiment
- Physics program
- Selected results
- Run II news and further prospects
- Summary

LHCb detector

Forward single-arm spectrometer with warm magnet ${ }^{\text {b }}$ (possibility to inverse polarity) Optimize for b and c hadron studies Vertexing Tracking stations Particle ID Ring Imaging Cherenkov Calorimeters and Muon Chambers

Acceptance $2<\eta<5$ Momentum resolution $\sim 0.5 \%$ IP resolution $\sim 20 \mu \mathrm{~m}$ Time resolution ~ 45 fs

LHCb data for Run I (2011+2012)

10^{11} protons per bunch colliding at 7 (2011) and 8 (2012) TeV

Luminosity at IP8 (LHCb): 2-4 $\times 10^{32} \mathbf{c m}^{-2} \mathrm{~s}^{-1}$ About 1500 charged particles produced at each pp collision
$\sigma(b \bar{b})-75 \mu \mathrm{~b} @ 7 \mathrm{TeV}^{*}$ in LHCb acceptance ~ 40\% B+, 40\% B0, ~10\% Bs Remaining b baryons, Bc, etc...

40 MHz bunch crossing rate

LO Hardware Trigger: 1 MHz readout, high $\mathrm{E}_{\mathrm{T}} / \mathrm{P}_{\mathrm{T}}$ signatures

Software High Level Trigger
Introduce tracking/PID information, find displaced tracks/vertices
Offline reconstruction tuned to trigger time constraints
Mixture of exclusive and inclusive selection algorithms

Output rate 3 kHz in 2011 4.5 kHz in 2012

* J. High Energy Phys. 08 (2013) 117

Physics program

Rare decays, BSM and exotics
see J. Serrano (Fri 07/08) and X. Cid Vidal (Wed 05/08) for details
CP violation
See B. Souza de Paula (Fri 07/08) for details
Heavy flavours and spectroscopy
Forward physics: QCD, EW and BSM in the forward region

See M. Rangel (later this afternoon) for details
See X. Cid Vidal (Wed 05/08) for direct searches on forward Higgs and BSM particles

Selected results

- Rare b \rightarrow sl+ ${ }^{-}$

New $\mathrm{B} \rightarrow \pi \mu \mu$ results on $\mathrm{b} \rightarrow \mathrm{d} \ell+\ell$ - imminently shown at DPF2015 meeting

- Semileptonics: $\Lambda_{b} \rightarrow p \mu \nu, B \rightarrow D^{(*)} \tau v$
- Top physics: first top measurement
- Spectroscopy: multiquark bound states
- Unitarity triangle: γ angle

CKM picture in brief

Weak interaction couples quarks through elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
Weak eigenstates are different from mass eigenstates $=$ CKM matrix is not diagonal and may relate quarks of different generation

~ 1
~ 0.2
~ 0.04
$\sim 0.004-0.008$
Clear hierarchy in the couplings: the further from diagonal, the weaker

Unitarity imposes relations, among which $\sum_{k} V_{i k} V_{j k}^{*}=0$
Elements forming sides (and angles) of 3 independent "unitarity" triangles, of which only a couple are of interest for heavy-flavour decays

CKM and unitarity triangles

Most interesting relation:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

Sides usually measured in semileptonic decays and oscillation frequency, angles in CP asymmetries

$$
\begin{aligned}
& V_{u d} V_{u b}^{*} /{ }_{\alpha}^{B_{d d}^{0} \rightarrow \pi^{+} \pi^{-}} V_{t b}^{*} \text { "Bd triangle" } \\
& B \rightarrow D K \\
& \& \gamma \quad V_{c d} V_{c b}^{*}{ }^{*}{ }_{B_{d}^{0} \rightarrow J / \psi K_{s}}
\end{aligned}
$$

New physics can intervene in the loops/boxes
Can be probed through the analysis of the dynamics of the decays
Or testing, e.g., lepton universality $b \rightarrow s e^{+} e^{-} / b \rightarrow s \mu^{+} \mu^{-}$

Dynamics for $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mu^{+} \mu^{-}, \mathrm{B}_{\mathrm{s}} \rightarrow \phi \mu^{+} \mu^{-}$

$\frac{1}{\mathrm{~d} \Gamma / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3} \Gamma}{\mathrm{~d} \cos \theta_{l} \mathrm{~d} \cos \theta_{K} \mathrm{~d} \Phi}=\frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}} \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}\right.\right.$ $\mathbf{q}^{2}=\boldsymbol{\mu}^{+} \boldsymbol{\mu}$ invariant $\quad+\frac{1}{4}\left(1-F_{\mathrm{L}} \sin ^{2} \theta_{K} \cos 2 \theta_{l}-F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{l}\right.$ mass squared $\quad+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \Phi+S_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \Phi$ Formula slightly different between ${ }^{+} A_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \Phi+A_{6} \sin ^{2} \theta_{K} \cos \theta_{l}$ \mathbf{K}^{*} (self-tagging) and $\boldsymbol{\phi} \quad+S_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \Phi+A_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \Phi$ F_{L} : fraction of longitudinal $\left.+A_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \Phi\right]$. polarization of K^{*} / ϕ
$A_{6} \sim A_{F B}=$ forward-backward asymmetry of the dimuon system $A_{5}=S_{5}$ in the case of K^{*}
They depend on $B \rightarrow K^{*} / \phi$ form factors and Wilson Coefficients of the OPE

$\mathrm{B} \rightarrow \mathrm{X} \mu^{+} \mu^{-}$events distribution

LHCb-CONF-2015-002
 $$
\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mu^{+} \mu^{-}
$$

LHCb-PAPER-2015-023

$$
\mathrm{B}_{\mathrm{s}} \rightarrow \phi \mu^{+} \mu^{-}
$$

Signal yield excluding charmonia: 2.4 k evts Signal Yield excluding charmonia: $\mathbf{\sim} \mathbf{4 0 0}$ evts

$$
\mathrm{B}_{\mathrm{s}} \rightarrow \phi \mu^{+} \mu^{-}
$$

3.56 below SM prediction in the lower q half, no discrepancy for the angular variables with this statistics

$$
\boldsymbol{P}_{5}^{\prime}=\frac{S_{5}}{\sqrt{F_{L}\left(1-F_{L}\right)}} \begin{gathered}
\text { 3.7o combined difference } \\
\text { with SM }
\end{gathered}
$$

$\Lambda_{\mathrm{b}} \rightarrow \Lambda^{+} \mu^{-}$

LHCb-PAPER-2015-009, arXiv:1503.07138

$\mathrm{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mu \mu$

Nature 522, 68-72 (04 June 2015)

No significant deviation from SM yet (ratio of $\mathrm{Bd} / \mathrm{Bs}$ is still $2,1 \sigma$ within SM)

Hidden sector bosons $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \chi\left(\rightarrow \mu^{+} \mu^{-}\right)$

LHCb-PAPER-2015-036 in preparation
Theoretical models predicting new particle to couple to SM particle through mixing with Z, H, γ, v
Short (axion-like PRD81(2010)034001, DM mediator PLB727(2013)) vs long (inflaton JHEP1005(2010)010) lifetime predictions
Typical mass $<\mathrm{O}(1 \mathrm{GeV})$ and lifetime coverage up to $10^{-8} \mathrm{~s}$

No hint of signal, set upper limit vs lifetime and mass:

Semileptonics

Theoretically well-understood in the SM Decays to light leptons well-measured by B factories
a) Not as good for τ lepton
b) Good way to extract $V_{q b}$ CKM element
a) Any new (charged) intermediate boson/mediator would couples preferentially to τ : LHCb studied $B^{0} \rightarrow D^{*+} \tau \nu / B^{0} \rightarrow D^{++} \mu \nu$ (LHCb-PAPER-2015-025, arXiv:1506.08614)
b) Use of $b \rightarrow u \mu v$ to improve $\left|V_{u b}\right|$ (relative uncertainty still ~ 12-13\%) + solve the tension between measurements from exclusive $B \rightarrow \pi \mu v$ and inclusive $B \rightarrow X_{u} \mu v$: Use of $\Lambda_{b} \rightarrow p \mu v$ (LHCb-PAPER-2015-013, arXiv:1504.01568)

$\overline{\mathbf{B}}^{0} \rightarrow \mathrm{D}^{+} \boldsymbol{\tau}-\bar{v}_{\tau}$

Measure: $R\left(D^{*}\right) \equiv \frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{v}_{\tau}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{v}_{\mu}\right)}$

Using τ decay:

$$
\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}
$$

$=0.252$ in SM (PRD 85094025 (2012)), with very good precision

LHCb-PAPER-2015-025, arXiv:1506.08614

$R\left(D^{*}\right)$ result

$R\left(D^{*}\right)=0.336 \pm 0.027 \pm 0.030$

Follows historical trend, above SM prediction by ~ 2.1 σ

LHCb-PAPER-2015-013, arXiv:1504.01568
Nature Physics (2015) doi:10.1038/nphys3415

$$
\Lambda_{\mathrm{b}} \rightarrow \mathbf{p} \mu^{-} \bar{v}_{\mu}
$$

Phys. Rev. D 90, 094003 (2014)
Help clarify the debate on $\left|\mathrm{V}_{\mathrm{ub}}\right|$ and the tension between inclusive and exclusive measurements

Fit the ε_{R} dependence on additional left-handed $\mathrm{V}+\mathrm{A}$ current

Experimentally:

use $\Lambda_{b} \rightarrow \Lambda_{c} \mu^{-} \bar{v}_{\mu}$ as a normalization channel to minimize systematics
Derive $\left|\mathbf{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{cb}}\right|$
Momentum transfer q and corrected mass as analysis variables
Fit corrected mass at high \mathbf{q}^{2} (better \mathbf{q} determination)

$$
M_{c o r r}=\sqrt{M_{p \mu}^{2}+p_{\perp}^{2}}+p_{\perp}
$$

$\Lambda_{b} \rightarrow p \mu^{-} \bar{v}_{\mu}$ fits

Normalization channel $\Lambda_{b} \rightarrow \Lambda_{c} \mu^{-} \bar{\nu}_{\mu}$

First observation with the yield $N\left(\Lambda_{b} \rightarrow p \mu^{-} \bar{v}_{\mu}\right)=17687 \pm 733$
Yield ratio is then corrected for efficiency ratio to derive CKM elements

$$
\Lambda_{\mathrm{b}} \rightarrow \mathrm{p} \mu-\bar{v}_{\mu}-\mathrm{V}_{\mathrm{ub}}
$$

Using result from lattice QCD calculations arXiv:1503.01421:

$$
\frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2}}=\frac{\int_{15 \mathrm{GeV}^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \Gamma\left(\Lambda_{b} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}{\int_{7 \mathrm{GeV}^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu^{-} \bar{\nu}_{\mu}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}(0.68 \pm 0.07)
$$

One gets:

$$
\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}=0.083 \pm 0.004(\text { expt }) \pm 0.004(\text { lattice })
$$

and:

$$
\left|V_{u b}\right|=\left(3.27 \pm 0.15(\text { exp }) \pm 0.17(\text { theory }) \pm 0.06\left(\left|V_{c b}\right|\right)\right) \times 10^{-3}
$$

Initial overlap

With LHCb measurement
$\gamma=\arg \left(\frac{-V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)$

$$
\left.V_{u d} v_{u b}^{*}\right)^{*}{ }^{\alpha}, \quad V_{u d} v_{t b}^{*}
$$ γ angle from trees $\quad \gamma V_{c d} v_{c b}^{*} \beta$,

Use interfering amplitudes in tree-level $\mathbf{B} \rightarrow \mathbf{D K}{ }^{(1)}(\mathbf{h}, \mathrm{hh})$ decays

Fits use ratios of allowed/suppressed BF + asymmetries
For multibody D decays, dilution factor due to δ_{D} variation across phase space
Compare to γ from loop diagrams: mismatch? BSM particles in the loop? Numerous LHCb analyses already published or on-going, several new channels adding up more information

We will see two recent examples of such novelties

Recently added decays modes for γ $\mathbf{B}^{-} \rightarrow \mathbf{D} \mathbf{K}^{-}$with $\mathbf{D} \rightarrow \mathbf{h}^{+} \mathbf{h}^{-} \boldsymbol{\pi}^{0}$ and $\mathbf{D} \rightarrow \mathbf{K}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}$

 Recent determination of CP-even contents F of D $\rightarrow \mathrm{h}^{+} \mathrm{h}^{-} \pi^{0-}$ CLEO-c, PLB740 (2015) 1 $\left[h^{+} h^{-} \pi^{0}\right] K$ to $\left[h^{+} h^{-} \pi^{0}\right] \pi$ ratio and $\left[h^{+} h^{-} \pi^{0}\right] K$ CP asymmetries used to extract observables:$$
\begin{gathered}
R\left(h^{+} h^{-} \pi^{0}\right)=1+\left(r_{B}\right)^{2}+\left(2 F\left(h^{+} h^{-} \pi^{0}\right)-1\right) 2 r_{B} \cos \delta_{B} \cos \gamma \\
A_{C P}\left(h^{+} h^{-} \pi^{0}\right)=\left(2 F\left(h^{+} h^{-} \pi^{0}\right)-1\right) 2 r_{B} \sin \delta_{B} \sin \gamma / R\left(h^{+} h^{-} \pi^{0}\right) \\
\mathbf{B}^{-} \rightarrow \mathbf{D} \mathbf{K}^{-\pi} \pi \text { with } \mathbf{D} \rightarrow \mathbf{h}^{+} \mathbf{h}^{-}, \mathbf{h}^{+} \mathbf{h}^{-}
\end{gathered}
$$

Generalization of techniques from $\mathbf{B}^{-} \rightarrow \mathbf{D} \mathbf{K}^{-}$to $\mathbf{B}^{-} \rightarrow \mathbf{D} \mathbf{X}_{\mathrm{s}}$ states

$$
\begin{aligned}
& \Gamma\left(B^{-} \rightarrow\left[h^{-} h^{+}\right]_{D} X_{s}^{-}\right) \propto 1+r_{B}^{2}+2 \kappa r_{B} \cos \left(\delta_{B}-\gamma\right) \\
& \Gamma\left(B^{+} \rightarrow\left[h^{-} h^{+}\right]_{D} X_{s}^{+}\right) \propto 1+r_{B}^{2}+2 \kappa r_{B} \cos \left(\delta_{B}+\gamma\right) \\
& \Gamma\left(B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} X_{s}^{-}\right) \propto r_{B}^{2}+r_{D}^{2}+2 \kappa r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D}-\gamma\right) \\
& \Gamma\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} X_{s}^{+}\right) \propto r_{B}^{2}+r_{D}^{2}+2 \kappa r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D}+\gamma\right) \\
& \Gamma\left(B^{-} \rightarrow\left[K^{-} \pi^{+}\right]_{D} X_{s}^{-}\right) \propto 1+\left(r_{B} r_{D}\right)^{2}+2 \kappa r_{B} r_{D} \cos \left(\delta_{B}-\delta_{D}-\gamma\right) \\
& \Gamma\left(B^{+} \rightarrow\left[K^{+} \pi^{-}\right]_{D} X_{s}^{+}\right) \propto 1+\left(r_{B} r_{D}\right)^{2}+2 \kappa r_{B} r_{D} \cos \left(\delta_{B}-\delta_{D}+\gamma\right)
\end{aligned}
$$

\mathbf{k} : dilution factor

$\mathrm{B}^{-} \rightarrow \mathrm{D} \mathrm{K}^{-}$with $\mathrm{D} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-} \pi^{0}$ and $\mathrm{D} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{0}$

arXiv:1504.05442, PRD 91, 112014 (2015)
D $\rightarrow \pi^{+} \pi^{-} \pi^{0}$
$\mathrm{D} \rightarrow \mathrm{K}^{+} \mathrm{K}-\pi^{0}$

From CLEO-c DD data: small dilution in $\mathbf{D} \rightarrow \mathbf{K}^{+} \pi^{-} \pi^{0}$ High fraction of CP-even in $\mathbf{D} \rightarrow \mathbf{h}^{+} \mathbf{h}^{-} \pi^{0}$ Make them very adequate for γ measurement, particularly $\mathbf{D} \rightarrow \mathbf{h}^{+} h^{-} \pi^{0}$ Final fit improves measurements obtained by B-factories

$\mathrm{B}^{-} \rightarrow \mathrm{D} \mathrm{K}^{-} \pi \pi$ with $\mathrm{D} \rightarrow \mathrm{h}^{+} \mathrm{h}^{-}, \mathrm{h}^{\prime+} \mathrm{h}^{-}$

LHCb-PAPER-2015-020, arXiv:1505.07044

$B+/ B$ - invariant mass for the case $D \rightarrow K \pi$
favored $K^{-} \boldsymbol{\pi}^{+}$vs suppressed $K^{+} \boldsymbol{\pi}^{-}$
Global fit for all D \rightarrow $\mathrm{h}^{+} \mathrm{h}^{-}$modes gives:

$$
\gamma=\left(74_{-18}^{+20}\right)^{\mathrm{o}}
$$

Which agrees with the global average published in LHCb-CONF-2014-004

J / Ψ p pentaquark resonances in $\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{-} \mathrm{p}$

- Hypothesis of hadrons with more than three quarks raised 50 years ago (GellMann, Phys. Lett. 8 (1964) 214 + later works of Jaffe, Strottman and Lipkin)
- A lot of past claims of pentaquark ended up not convincing (Eur. Phys. J.H37(2012) 1)
- One strong tetraquark candidate: $Z(4430)^{+}$ observed in $\overline{\mathrm{B}}^{0} \rightarrow \Psi^{\prime} \mathrm{K}-\pi+$ decays (Belle, then LHCb)
- A priori $\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / \Psi(\mu \mu) \mathrm{K}-\mathrm{p}$ are expected to proceed dominantly through $\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / \Psi(\mu \mu) \Lambda^{*}$
$\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / \Psi \Psi^{-} \mathrm{p}$ signal in dlata

Looking at invariant masses in $\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{-} \mathrm{p}$

Λ and Σ

$J / \Psi p$ resonances should have a minimal quark content of ccuud, i.e. charmonium pentaquark, labelled as $\mathbf{P}_{\mathrm{c}}{ }^{+}$

Full amplitude analysis performed to
 check that these are not reflections from Λ^{*}

Amplitudes in $\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{-} \mathrm{p}$

Full fit includes 2 invariant masses and 5 decay angles!

Minimal content for correct convergence/quality found to be $14 \Lambda^{*}$ states + 2 $\mathrm{P}_{\mathrm{c}}{ }^{+}$resonances, $\mathrm{P}_{\mathrm{c}}{ }^{+}(4380)$ and $\mathrm{P}_{\mathrm{c}}{ }^{+}(4450)$
Masses: $1380 \pm 8 \pm 29 \mathrm{MeV}$ and $4449.8 \pm 1.7 \pm 2.5 \mathrm{MeV}$
Widths: $205 \pm 18 \pm 86 \mathrm{MeV}$ and $39 \pm 5 \pm 19 \mathrm{MeV}$
Spin-parity: best fit gives (3/2-, 5/2+) but (3/2+, 5/2-) and (5/2+, 3/2-) also acceptable solutions

$\mathbf{P}_{\mathrm{c}}{ }^{+}$argand diagrams

Very conclusive! Because of wider state, amplitude is more sensitive to the details of modeling of Λ^{*}

Although many tests have been performed to insure the robustness of the results, further work is being performed

$\mathbf{P}_{\mathrm{c}}{ }^{+}$detailed structure?

Tight bounds? Molecular?

Tetraquark Z(4430)- in $\mathrm{B}^{0} \rightarrow \Psi^{\prime} \pi^{-} \mathrm{K}^{+}$

Already observed by Belle, resonant character was not established 4D amplitude analysis converge to $\mathrm{J}^{\mathrm{P}}=1^{+}$
LHCb uses a sample of 25 k signal events (vs 2 k for B -factories)

$$
\begin{aligned}
& \text { Mass: } 4475 \pm 7^{+15}{ }_{-25} \mathrm{MeV} \\
& \text { Width: } 172 \pm 13^{+37}{ }_{-34} \mathrm{MeV}
\end{aligned}
$$

Remark: both P_{c} and Z
contain charmonium

Top quark

- tt and single top physics extensively explored by
 ATLAS and CMS in the central region

LHCb will complete the knowledge at high pseudorapidities

Top in LHCb (LHCb-PAPER-2015-022)

Searched for in W(lept) + b-jet events

Use W + j-jet events as normalization

MVA discrimination to discard light +c jets
Compare W+b yield and asymmetry with expectations with and without top

5.4σ (first) observation of top production in the forward region

$$
\begin{aligned}
& \sigma(\text { top })[7 \mathrm{TeV}]=239 \pm 53(\text { stat }) \pm 38 \text { (syst) } \mathrm{fb} \\
& \sigma(\text { top })[8 \mathrm{TeV}]=289 \pm 43(\text { stat }) \pm 46(\text { syst }) \mathrm{fb}
\end{aligned}
$$

Current data taking (Run II)

Run II has begun! Higher CM energy + small bunch spacing (25 ns) = data rate \Uparrow Finished 50 ns bunch spacing run

LHCb Integrated Luminosity at p-p 6.5 TeV in 2015

About - $6 \mathrm{pb}^{-1} @ 13 \mathrm{TeV}$ already taken, 25 ns data taking will start soon

New trigger flow: calibrations performed between High Level Triggers 1 and 2

LHCb 2015 Trigger Diagram

40 MHz bunch crossing rate

LO Hardware Trigger : 1 MHz readout, high $\mathrm{E}_{\mathrm{T}} / \mathrm{P}_{\mathrm{T}}$ signatures

: Software High Level Trigger
Partial event reconstruction, select displaced tracks/vertices and dimuons

Buffer events to disk, perform online detector calibration and alignment

Full offline-like event selection, mixture of inclusive and exclusive triggers

12.5 kHz Rate to storage

Early signals from first Run II data

$\mathrm{D}^{+} \rightarrow \mathrm{K} \pi \pi$

Early measurements from first Run II data

LHCD-PAPER-2015-037
J/ Ψ cross-sections @ $\sqrt{\mathrm{s}}=13 \mathrm{TeV}$
Measured prompt + component from b decays

J / Ψ from b, prompt J/世, background, wrong PV association (tails)

$$
\begin{aligned}
\sigma(\text { prompt } J / \psi) & =15.35 \pm 0.03 \text { (stat) } \pm 0.85 \text { (syst) } \mu \mathrm{b} \\
\sigma(J / \psi \text { from } b) & =2.36 \pm 0.01 \text { (stat) } \pm 0.13 \text { (syst) } \mu \mathrm{b} .
\end{aligned}
$$

Using acceptance rescaling from Pythia $+b \rightarrow J / \Psi X$ BF from PDG:

$$
\sigma(p p \rightarrow b \bar{b} X)=518 \pm 2 \text { (stat) } \pm 53 \text { (syst) } \mu \mathrm{b}
$$

Upgrade (see A.Schopper Wed 05/08)

LHCb Upgrade Trigger Diagram

- Planned during LS2 (2019-2020) Prepare for acquisition of $50 \mathrm{fb}^{-1}$ - Detectors:
full upgrade of the tracking system new RICH (Particle ID) detectors Calorimeters and muon system: new electronics, more shielding, etc...
- Triggering: full software trigger

This removes the limitation of the LO Hardware trigger (1 MHz)

30 MHz inelastic event rate and full event rate building

LLT : 15-30 MHz output rate, select high $E_{T} / P_{t}\left(h^{ \pm} / \mu / e / Y\right)$

: Software High Level Trigger

Full event reconstruction, inclusive and exclusive kinematic/geometric selections

Add offline precision particle identification and track quality information to selections

2-10 GB/s rate to storage

Summary

A big variety of results released in all aspects of the physics program

Pushing the SM further in the corners and hunt for intervention of NP: e.g., persisting discrepancies in some observables of rare decays New quark bound states
Direct searches are now ramping up as part of forward physics studies
Very promising first Run II data taking: the detector is running Ok, fast and efficient data acquisition and analysis with the new streaming model

First paper draft ready almost immediately after data taking
Very exciting prospects ahead for the coming 25 ns running

- Preparation for upgrade is well advanced and most of the R\&D phases are now achieved

Backup

γ from B \rightarrow DK, different techniques

$f_{D}=C P$ eigenstates, $D^{0} \rightarrow K^{+} K ; \pi^{+} \pi^{-}$, $K s \pi^{0}$
Gronau, London, Wyler (GLW) 1991

- $f_{D}=$ flavour states: $D^{0} \rightarrow K^{+} \pi^{-}, K \cdot \pi^{+}$

Atwood, Dunietz, Soni (ADS) 1997

- $f_{D}=$ multibody final states (variation of δ_{D} over phase space)

Ksh+h- Giri, Grossman, Soffer, Zupan 2003; Poluektov 2004 (GGSZ-P)
$\mathrm{K}^{ \pm} \pi^{-/+} \pi^{+} \pi^{-}$, multibody ADS
KsK $^{ \pm} \pi^{-/+}$, GLS

- Some variants involving neutrals, B^{0} and $B s$

Observables: charge asymmetries and BF ratios of suppressed/favoured D decays (applies for self-tagging decays)

γ from trees

Case of $\mathrm{D}^{0} \rightarrow \mathrm{~K}-\pi+$ (Cabibbo Allowed), $\mathrm{D}^{0} \rightarrow \mathrm{~K}+\pi$ - (double Cabibbo Suppressed)

$$
R_{h}^{ \pm}=\frac{\Gamma\left(B^{ \pm} \rightarrow D_{D C C} h^{ \pm}\right)}{\Gamma\left(B^{ \pm} \rightarrow D_{C A} h^{ \pm}\right)}=\frac{r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D} \pm \gamma\right)}{1+\left(r_{B} r_{D}\right)^{2}+2 r_{B} r_{D} \cos \left(\delta_{B}-\delta_{D} \pm \gamma\right)}
$$

For multibody decays, must take into account the interference term between the two amplitudes in the D meson phase space, using a coherence factor κ_{D} PRD68 (2003) 033003, arXiv:hep-ph/0304085

$$
2 r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D} \pm \gamma\right) \rightarrow 2 r_{B} r_{D} \kappa_{D} \cos \left(\delta_{B}+\delta_{D} \pm \gamma\right)
$$

