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The Tile Calorimeter

e ATLAS central hadronic calorimeter.

® Sampling calorimeter:

® Steel as absorbing material.

® Plastic scintillating tile as active material.
® Three Cylinders:

® Long barrel (covering |1 |<1.0).
* Extended barrels (covering

0.85<|M|<1.7).

* Total length 12 m, diameter 8.8 m,
weight 2900 tons.

* Jet linearity' (from data):
® ~39% in the range 25 GeV to few TeV.

® Jet energy resolution' (from data):
o 0(E[GeV])/E[GeV]~60%/VE/GeV+3%.

a LISHEP 2015 - Manaus, Brazil "The ATLAS Collaboration, The ATLAS experiment at the CERN Large
K Hadron Collider, JINST 3 S08003, 2008. /
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The Tile Calorimeter

® 64 independent modules in each Tile

cylinder.

=

Scintillator
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e Scintillator tiles inserted in the iron

structure.

° Light produced in scintillators collected |

by wavelength shifting fibres (WLS) and
delivered to photomultipliers (PMT:s -

Hamamatsu R7877). Wiy o g ",{a |
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* Approximately 10,000 readout channels
(PMTs).
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The Tile Calorimeter

® Readout granularity:
® Three radial layers (A, =1.5,4.1 & 1.8).

* AN X Ap=0.1x0.1 (0.2 x 0.1 in outermost layer). Each cell
readout by 2 different PMTs except for the special cells (e.g E-cells).

1-0,0
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Sighal Processing Chain

° Light produced from scintillating tiles is transmitted to
PMTs located inside the modules and converted into
electric signals.

® PMT output signal is shaped (amplitude proportional to
energy) and amplified with two difterent gains (1:64)

° Signals are sampled at 40 MHz and digitized samples are
sent to ReadOut Driver (ROD).

o Digital signal processing is carried out at the ROD level.

® Signal amplitude, time and quality are computed for
each cell and recorded.

e Raw data from all signals above certain threshold are
recorded for offline analysis.
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TileCal signal reconstruction
® The shaped signal is digitized at 40 MHz.

e Electronic noise is usually modeled by a Gaussian distribution.

® An Optimal Filter (OF) algorithm, based on a variance minimization

procedure, is used to extract signal parameters — amplitude (Agp),

time (£pr) and quality — from the received dlgltlzed samples 77.
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Optimal Filter Algorithm

® Goal is to estimate the amplitude AO F and time tpp from the 7 digitized

samples, through a weighted sum of the received digitized samples 7;:

7 7

" 1

Aor = ) winy tor = R b; 1;
i=1 OF 737

where W; are the OF weights.

* OF weights W; and b; are computed from the following parameters using

the Lagrange multipliers:

* Simple and fast

® Channel pulse shape
* Suitable to be used on

® Noise covariance matrix

digital signal processors

° Expected signal phase

® A set of constraints can also be added to the optimization procedure.
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TileCal Signal Reconstruction (Runl)
® The OF version used during LHC Run1 is called OF2.

* The noise covariance was approximated by the identity matrix (white

Gaussian noise) and the following three constraints were used:

7 7 7
1) Z wig; = 1, 2) Z wig'; =0, 3) z w; =0
=1 =1 =1

where ge g’ correspond to the normalized reference pulse shape

(output from shaping circuit) and its derivative, respectively.

* Constraint 1 implements the energy scale factor. Constraints 2 and 3
make the estimator robust against phase and baseline deviations,

respectively.
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TileCal Signal Reconstruction (Run?2)

e For LHC Run2, constraint 3 (, i7=1 w; = 0) is removed from both

computation of W; and bj, as it increases the variance of the OF estimator.
This version of OF is called OF1.

® Therefore, OF1 relies on the pedestal stability.

® In the OF1 version, the pedestal value is subtracted from each received

digitized sample 7; when computing AO rand tpp:

7 7
- 1
Rop = ) wilri—ped)  top =5— ) b (ri—ped)
i=1 Aor &=

where ped is the pedestal value. This value is measured through periodic
calibration runs and stored in data base for online and oftline use.

® The background covariance matrix will also be used in the computation of
W;, aiming at reducing the incertainties introduced by the signal pile-up.
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Performance
® Evaluation for the highest occupancy cell in TileCal (E4).

* A simulation containing only noise (electronic+pile-up) is used to
evaluate the improvement when using the correct noise covariance
matrix with respect to the identity matrix.

® The OF2 (used in Runl) presents long negative tail due to the presence
of Out-Of-Time (OOT) signals.
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* Although the signal pile-up introduces non-Gaussian components to the
background, the covariance matrix can be used to improve performance, for

extended barrel cells (| n|>1), which suffer more from the OOT signals.

® The plot shows the percentage improvement in the RMS of the estimation

error distribution by using the covariance matrix with respect to the identity

The cells in barrel
region (|N|<1) are
less affected as the
noise is mainly
electronic noise
(approximated by an

identity matrix).




Future Perspectives




Future Perspectives (motivation)

® The OF method is designed for Gaussian noise only.

® With the increase of pile-up, the background noise comprises the
electronic (Gaussian like) convoluted with the pile-up (log-normal

like), therefore OF becomes no longer optimum.

* A more sophisticated approach has been proposed, namely the
Constrained Optimal Filter (COF).

® Unlike OF, COF considers the pile-up as additional signals, and it
estimates a linear deconvolution matrix (based on the reference

pulse shape) to recover the signal within the readout window

® Therefore, the noise comprises only the usual electronic noise

(WG noise) and the designed becomes luminosity independent.
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Future Perspectives (COF method)

e Cell energy distributions for COF
and OF2 (used in Runl).

* The noise range (£200 MeV) is
highlighted to illustrate the

estimation error using real data.

® Due to the pedestal constraint
imposed by OF2 (217:1 w; = 0),
the method tends to estimate
negative energies in the presence of

OOT signals.

® The COF method is resilient to
OOQOT signals, therefore, it presents
better energy resolution than OF?2.
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Future Perspectives (COF method)

e Cell energy correlation
between COF and OF2.

® Under pile-up conditions,
OF2 tends to estimate
negative or positive

energies, depending on the

position of the OOT signals.

e A small contribution from
signals outside the readout
window (£ 100 ns or

further) is also seen.
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Future Perspectives (COF method)

® The quality factor (QF) is a measure of

signal reconstruction goodness, defined 100
by: S LS ~ 'ATLAS preliminary I 10°
Ié' - Tile calorimeter 1
7 IR integrity i 2012 data | -
80 -~ data integrity issues
0F = | -5y - (s-oTeV | 410°
l l i without dT= 25 ns =
\ =1 60— OOT signals ~ <H>= 1.3 7 1 s
where 17 and S; are the received and I T :-_ 10
reconstructed signal samples, respectively. 4 0_— with 713
* Since COF estimates the amplitudes of - 00T signals 1= 10°
in-time and OOT Signals, its i 13
reconstructed signals presents higher 20+ -
accuracy then OF2. i 1 10
® In the presence of OOT signals, OF2 -
presents large values of QF. o- . 1

® Large values of QF . can be also used 0 20 40 60 80 100
to flag data integrity issues. QF .,
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Conclusions
® The Optimal Filter (OF) algorithm for TileCal energy

reconstruction algorithm was presented.

® The OF design was revised and a new version (OF1) is planned to
operate during Run2, where the pedestal value is estimated
offline through calibration runs and subtracted online from the
digitized samples

® As LHC luminosity increases, the etfect of the pile-up

deteriorates the signal reconstruction performance.

® The information from the background second order statistics will
be used in LHC Run2 to reduce incertainties due to OOT signals
in high occupacy cells.
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Conclusions
® A promissing approach (COF) has been implemented

and evaluated offline in cell level and it is currently

under validation for future use.

® COF is unfiaseable for current TileCal online electronics
setup (based on DSP devices).

* However, it can be tested for oftline and future upgrades.
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