Mai 2008

Hydrodynamic Evolution in EPOS

Klaus Werner
<werner@subatech.in2p3.fr>

EPOS: in collaboration with T. Pierog Hydro: in collaboration with T. Hirano and Y. Karpenko

- Parton evolution in EPOS
- Hadronization
- Remnants
- □ Factorization and Multiple Scattering
- Initial Conditions for Hydro
- Hydrodynamic evolution

quasi longitudinal color electric field "flux tube"

> gluons = transverse kinks

> > decay via pair production

Parton evolution

from projectile (target)
towards the center (small x)

nucleon

In the simplest case: linear evolution equation (DGLAP)

Tested in DIS ($\gamma^* p$ scattering)

Elementary interaction: Parton ladder = parton evolution from both sides towards the center (small x)

nucleon

nucleon

Important in particular at moderate energies (RHIC):

"parton ladder" is meant to contain two parts:

- the hard one (parton evolution following an evolution equation),
- a soft one -> purely phenomenological object, parametrized in Regge pole fashion.

The soft part essentially compensates for the infrared cutoffs, which have to be employed in the perturbative calculations.

High energy and/or nuclear collisions: **non-linear effects**

due to the fact that at small x the gluon densities get so high that gluon fusion becomes important (eventually: saturation)

Nonlinear effects could be taken into account by

□ using BK instead of DGLAP evolution or phenomenological approach (like simple parameterization of gluon distributions)

Here: phenomenological approach, which grasps the main features of these non-linear phenomena, and still remains technically doable **Two types of non-linear effects:**

inelastic rescattering (inelastic ladder splitting)

elastic rescattering of a ladder parton on a projectile or target nucleon (elastic ladder splitting)

Affect total cross section and particle production

Elastic splitting => screening => saturation

(negative contribution to the cross section).

Realization:

□ fit parton-parton interaction ¹ as $\alpha (x^+)^{\beta} (x^-)^{\beta}$ ² □ modify as $\alpha (x^+)^{\beta} (x^-)^{\beta+\epsilon}$,

Effect can be summarized by a simple positive exponent ε (depending on $\log s$ and N_{particip})

¹imaginary part of the corresponding amplitude in *b*-space ${}^{2}x^{+}, x^{-}$: light cone momentum fractions of the first ladder partons

Inelastic splitting:

The parallel ladder pieces are close to each other in space => common color field

nucleons

String language: "string fusion" => increased string tension κ .

Affects hadronization: $q - \bar{q}$ break probability: $\exp(-\pi m_q^2/\kappa)$

Hadronization

Parton ladder represents a (mainly) **longitudinal color field**, with transverse kinks (ladder rungs = gluons) ³.

 The fields decay via pair production (Schwinger mechanism).

Tool to treat evolution and decay:
 classical string theory (use general symmetries).

³Lund model idea, first e+e-, then generalized to pp, see also CGC

decay via pair production

Hadrons are NOT associated to individual partons!

unless one considers hard processes

Remnants

Picture is not complete:

Interacting partons leave behind projectile/target remnants

Possible solution: color exchange.

Disfavored by strange antibaryon data at the SPS M. Bleicher et al, Phys.Rev.Lett.88, 202501, 2002.

Better:

quark-antiquark pair takes part in interaction,

leaving behind a colorless (excited) remnant

Important in the fragmentation region (data: low energy pp, pA; Hera)

Multiple Scattering

At high energies one has certainly multiple scattering even in pp.

Inclusive cross sections:

quantum interference may help to provide simple formulas referred to a "factorization" ⁴
 (multiple scattering is "hidden")

For exclusive quantities and anyway for MC applications:

one has to go beyond factorization and formulate a consistent multiple scattering theory

⁴not necessarily true, see recent papers by Collins

Possible solution: Gribov's Pomeron calculus, several Pomerons are exchanged in parallel (here: Pomeron = parton ladder)

Better: multiple exchange of parton ladders, with energy sharing

(our solution)

nucleon

Initial Condition for Hydro

There seems to be no doubt that RHI collisions (at least at RHIC) follow a hydrodynamic evolution

Initial conditions of hydro phase:

□ parameterized, to optimize final results

□ or obtained from microscopic approach, based on the hypothesis that thermalization happens very quickly and is achieved at some τ_0

Here: second option, using EPOS

We consider color field / flux tube ^a as pre-initial condition

actually many overlapping flux tubes

not partons!

^{*a*} more precise: string segments

Consider string segments at some $\tau = \tau_0$

number of segments per unit volume larger than ρ_0 : **core** (red)

otherwise: **corona** (green)

high pt segments count as corona

core: we include inwards moving corona segments

Hydro evolution: three modes: □ Usual case:

Average initial condition (many simul.), then
 3D hydro calculation (T.Hirano and Y.Karpenko)

- □ Ideal, but very slow:
 - IC for single event, then 3D hydro
- □ Compromise:
 - Average initial condition (many simul.)
 - then 3D hydro calculation & tabulation of FO surface and FO properties
 - Run EPOS EbyE, determine energy density at τ_0 , hadronize acc to FO tables (shortcut IC \rightarrow FO)

In addition:

possibility to use (or not) UrQMD afterburner for final state hadronic rescatterings

(in collaboration with S.Haussler, M.Bleicher)

FO surface and properties

We parameterize the hyper-surface $x^{\mu} = x^{\mu}(\tau, \varphi, \eta)$ as

 $x^{0} = \tau \cosh \eta, \quad x^{1} = r \cos \varphi, \quad x^{2} = r \sin \varphi, \quad x^{3} = \tau \sinh \eta,$

with $r = r(\tau, \varphi, \eta)$ being some function of the three parameters τ, φ, η . The hypersurface element is

$$d\Sigma_{\mu} = \varepsilon_{\mu\nu\kappa\lambda} \frac{\partial x^{\nu}}{\partial \tau} \frac{\partial x^{\kappa}}{\partial \varphi} \frac{\partial x^{\lambda}}{\partial \eta} d\tau d\varphi d\eta,$$

with $\varepsilon^{\mu\nu\kappa\lambda} = -\varepsilon_{\mu\nu\kappa\lambda} = 1$. Computing the partial derivatives $\partial x^{\mu}/d\alpha$, with $\alpha = \tau, \varphi, \eta$, one gets

$$d\Sigma_{0} = \left\{ -r\frac{\partial r}{\partial \tau}\tau \cosh \eta + r\frac{\partial r}{\partial \eta} \sinh \eta \right\} d\tau d\varphi d\eta,$$

$$d\Sigma_{1} = \left\{ -\frac{\partial r}{\partial \varphi}\tau \sin \varphi + r\tau \cos \varphi \right\} d\tau d\varphi d\eta,$$

$$d\Sigma_{2} = \left\{ -\frac{\partial r}{\partial \varphi}\tau \cos \varphi + r\tau \sin \varphi \right\} d\tau d\varphi d\eta,$$

$$d\Sigma_{3} = \left\{ r\frac{\partial r}{\partial \tau}\tau \sinh \eta - r\frac{\partial r}{\partial \eta} \cosh \eta \right\} d\tau d\varphi d\eta.$$

0-20

The invariant volume element moving through the FO surface is

$$dV^* = d\Sigma_{\mu} u^{\mu},$$

with u being the flow four-velocity in the global frame, which can be expressed in terms of the four-velocity \tilde{u} in the "Bjorken frame" as

$$u^{0} = \tilde{u}^{0} \cosh \eta + \tilde{u}^{3} \sinh \eta,$$

$$u^{1} = \tilde{u}^{1},$$

$$u^{2} = \tilde{u}^{2},$$

$$u^{3} = \tilde{u}^{0} \sinh \eta + \tilde{u}^{3} \cosh \eta.$$

Using $\gamma = \tilde{u}^{0}$ and the flow velocity $v^{\mu} = \tilde{u}^{\mu} / \gamma$, we get

 $dV^* = w \, d\tau d\varphi d\eta,$

with

$$w = \gamma \left\{ -r \frac{\partial r}{\partial \tau} \tau + r \tau v^r + \frac{\partial r}{\partial \varphi} \tau v^t - r \frac{\partial r}{\partial \eta} v^3 \right\},\,$$

with $v^r = v^1 \cos \varphi + v^2 \sin \varphi$ and $v^t = v^1 \sin \varphi - v^2 \cos \varphi$ being the radial and the tangential transverse flow.

Storing the FO surface and properties means actually tabulating

 \Box the FO radius $r = r(\tau, \varphi, \eta)$,

- \Box the flow components $v^r(\tau, \varphi, \eta)$, $v^t(\tau, \varphi, \eta)$, $v^3(\tau, \varphi, \eta)$,
- \Box the FO weight $w(\tau, \varphi, \eta)$.

FO is the done as follows (equivalent to Cooper-Frye):

 \Box one generates hadrons h in a proper volume element $dV^* = w \, d\tau d\varphi d\eta$ isotropically as

$$dn_{h} = f_{E} \frac{dV^{*}}{(2\pi\hbar)^{3}} \exp(-\frac{\sqrt{p^{2} + m_{h}^{2}} - \mu_{h}}{T}) d^{3}p$$

with f_E to assure energy conservation despite EbE fluctuations of core energy

 \Box and then boost the momenta to the global frame

$$0-22$$

Results __ IC EPOS 1.87 __ Hydro Hirano PCE __ Tfo=130MeV

Results <u>IC EPOS 1.87</u> <u>Hydro Hirano PCE</u> <u>Tfo=130MeV</u>

UrQMD final state IA

Summary

- □ Latest EPOS takes into account
 - recent developments on nonlinear parton evolution (concerning cross sections and particle production)
 remnants ; flux tube picture
- EPOS (carefully checked agains pp, pA) provides initial conditions for hydro
 - EbyE procedure based on tabulated FO properties
 - detailed comparisons with data possible (and under way)