Mai 2008

Hydrodynamic Evolution in EPOS

Klaus Werner werner@subatech.in2p3.fr

EPOS: in collaboration with T. Pierog
Hydro: in collaboration with T. Hirano and Y. Karpenko
\square Parton evolution in EPOS
\square Hadronization
\square Remnants
\square Factorization and Multiple Scattering

- Initial Conditions for Hydro
\square Hydrodynamic evolution

$$
0-1
$$

Parton evolution

from projectile (target) towards the center (small x)

nucleon

In the simplest case:
linear evolution equation (DGLAP)

Tested in DIS ($\gamma^{*} p$ scattering)

$$
0-3
$$

Elementary interaction: Parton ladder

= parton evolution from both sides towards the center (small x)

nucleon

$$
0-4
$$

Important in particular at moderate energies (RHIC):
"parton ladder" is meant to contain two parts:
\square the hard one (parton evolution following an evolution equation),
\square a soft one -> purely phenomenological object, parametrized in Regge pole fashion.

The soft part essentially compensates for the infrared cutoffs, which have to be employed in the perturbative calculations.

High energy and/or nuclear collisions: non-linear effects

due to the fact that at small x the gluon densities get so high that gluon fusion becomes important (eventually: saturation)

$$
\frac{\alpha_{s} N_{c}}{Q^{2}} \times \frac{1}{N_{c}^{2}-1} \frac{x G}{\pi R^{2}} \approx 1 \rightarrow \text { saturation scale }
$$

Nonlinear effects could be taken into account by
\square using BK instead of DGLAP evolution or phenomenological approach (like simple parameterization of gluon distributions)

Here: phenomenological approach, which grasps the main features of these non-linear phenomena, and still remains technically doable

Two types of non-linear effects:

inelastic rescattering (inelastic ladder splitting)
elastic rescattering of a ladder parton on a projectile or target nucleon (elastic ladder splitting)
nucleons

nucleons

Affect total cross section and particle production

$$
0-7
$$

Elastic splitting
 \Rightarrow screening $=>$ saturation

(negative contribution to the cross section).
Realization:
\square fit parton-parton interaction ${ }^{1}$ as $\alpha\left(x^{+}\right)^{\beta}\left(x^{-}\right)^{\beta}{ }^{2}$
\square modify as $\alpha\left(x^{+}\right)^{\beta}\left(x^{-}\right)^{\beta+\varepsilon}$,

Effect can be summarized by a simple positive exponent ε (depending on $\log s$ and $N_{\text {particip }}$)

[^0]$$
0-8
$$

Inelastic splitting:

The parallel ladder pieces are close to each other in space => common color field
nucleons

strong color field
(enhanced
string tension)

String language: "string fusion"
$=>$ increased string tension κ.
Affects hadronization: $q-\bar{q}$ break probability: $\exp \left(-\pi m_{q}^{2} / \kappa\right)$

Hadronization

Parton ladder represents a (mainly)
longitudinal color field, with transverse kinks (ladder rungs $=$ gluons ${ }^{3}$.
\square The fields decay via pair production (Schwinger mechanism).
\square Tool to treat evolution and decay: classical string theory (use general symmetries).
${ }^{3}$ Lund model idea, firste+e-, then generalized to pp, see also CGC

$$
0-10
$$

Flux tube
stretches over wide range in rapdity
decay via pair production

Hadrons are NOT associated to individual partons!
unless one considers hard processes

Remnants

Picture is not complete:
Interacting partons leave behind projectile/target remnants
Possible solution: color exchange.
Disfavored by strange antibaryon data at the SPS
M. Bleicher et al, Phys.Rev.Lett.88, 202501, 2002.

Better:

quark-antiquark pair takes part in interaction,
leaving behind a colorless (excited) remnant
Important in the fragmentation region
(data: low energy pp, pA; Hera)

Multiple Scattering

At high energies one has certainly multiple scattering even in pp.

Inclusive cross sections:
\square quantum interference may help to provide simple formulas referred to a "factorization" ${ }^{4}$ (multiple scattering is "hidden")

For exclusive quantities and anyway for MC applications:
\square one has to go beyond factorization and formulate a consistent multiple scattering theory

[^1]
Possible solution: Gribov's Pomeron calculus, several Pomerons are exchanged in parallel (here: Pomeron = parton ladder)

Better:
multiple exchange of parton ladders, with energy sharing
(our solution)
nucleon
nucleon

0-14

Initial Condition for Hydro

There seems to be no doubt that RHI collisions (at least at RHIC) follow a hydrodynamic evolution

Initial conditions of hydro phase:
\square parameterized, to optimize final results
\square or obtained from microscopic approach, based on the hypothesis that thermalization happens very quickly and is achieved at some τ_{0}

Here: second option, using EPOS

0-15

We consider
color field / flux tube ${ }^{a}$ as pre-initial condition
actually many overlapping flux tubes
not partons!
${ }^{a}$ more precise: string segments

Consider string segments at some $\tau=\tau_{0}$

core: we include inwards moving corona segments

Hydro evolution: three modes:

\square Usual case:

- Average initial condition (many simul.), then 3D hydro calculation (T.Hirano and Y.Karpenko)
\square Ideal, but very slow:
- IC for single event, then 3D hydro
\square Compromise:
- Average initial condition (many simul.)
- then 3D hydro calculation \& tabulation of FO surface and FO properties
- Run EPOS EbyE, determine energy density at τ_{0}, hadronize acc to FO tables (shortcut IC $\rightarrow \mathrm{FO}$)

0-18

In addition:
possibility to use (or not) UrQMD afterburner for final state hadronic rescatterings

(in collaboration with S.Haussler, M.Bleicher)

FO surface and properties

We parameterize the hyper-surface $x^{\mu}=x^{\mu}(\tau, \varphi, \eta)$ as

$$
x^{0}=\tau \cosh \eta, \quad x^{1}=r \cos \varphi, \quad x^{2}=r \sin \varphi, \quad x^{3}=\tau \sinh \eta,
$$

with $r=r(\tau, \varphi, \eta)$ being some function of the three parameters τ, φ, η. The hypersurface element is

$$
d \Sigma_{\mu}=\varepsilon_{\mu \nu \kappa \lambda} \frac{\partial x^{\nu}}{\partial \tau} \frac{\partial x^{\kappa}}{\partial \varphi} \frac{\partial x^{\lambda}}{\partial \eta} d \tau d \varphi d \eta
$$

with $\varepsilon^{\mu \nu \kappa \lambda}=-\varepsilon_{\mu \nu \kappa \lambda}=1$. Computing the partial derivatives $\partial x^{\mu} / d \alpha$, with $\alpha=\tau, \varphi, \eta$, one gets

$$
\begin{aligned}
d \Sigma_{0} & =\left\{-r \frac{\partial r}{\partial \tau} \tau \cosh \eta+r \frac{\partial r}{\partial \eta} \sinh \eta\right\} d \tau d \varphi d \eta \\
d \Sigma_{1} & =\left\{\frac{\partial r}{\partial \varphi} \tau \sin \varphi+r \tau \cos \varphi\right\} d \tau d \varphi d \eta \\
d \Sigma_{2} & =\left\{-\frac{\partial r}{\partial \varphi} \tau \cos \varphi+r \tau \sin \varphi\right\} d \tau d \varphi d \eta \\
d \Sigma_{3} & =\left\{r \frac{\partial r}{\partial \tau} \tau \sinh \eta-r \frac{\partial r}{\partial \eta} \cosh \eta\right\} d \tau d \varphi d \eta
\end{aligned}
$$

The invariant volume element moving through the FO surface is

$$
d V^{*}=d \Sigma_{\mu} u^{\mu}
$$

with u being the flow four-velocity in the global frame, which can be expressed in terms of the four-velocity \tilde{u} in the "Bjorken frame" as

$$
\begin{aligned}
u^{0} & =\tilde{u}^{0} \cosh \eta+\tilde{u}^{3} \sinh \eta, \\
u^{1} & =\tilde{u}^{1}, \\
u^{2} & =\tilde{u}^{2}, \\
u^{3} & =\tilde{u}^{0} \sinh \eta+\tilde{u}^{3} \cosh \eta .
\end{aligned}
$$

Using $\gamma=\tilde{u}^{0}$ and the flow velocity $v^{\mu}=\tilde{u}^{\mu} / \gamma$, we get

$$
d V^{*}=w d \tau d \varphi d \eta
$$

with

$$
w=\gamma\left\{-r \frac{\partial r}{\partial \tau} \tau+r \tau v^{r}+\frac{\partial r}{\partial \varphi} \tau v^{t}-r \frac{\partial r}{\partial \eta} v^{3}\right\}
$$

with $v^{r}=v^{1} \cos \varphi+v^{2} \sin \varphi$ and $v^{t}=v^{1} \sin \varphi-v^{2} \cos \varphi$ being the radial and the tangential transverse flow.

Storing the FO surface and properties means actually tabulating
\square the FO radius $r=r(\tau, \varphi, \eta)$,
\square the flow components $v^{r}(\tau, \varphi, \eta), v^{t}(\tau, \varphi, \eta), v^{3}(\tau, \varphi, \eta)$,
\square the FO weight $w(\tau, \varphi, \eta)$.

FO is the done as follows (equivalent to Cooper-Frye):
\square one generates hadrons h in a proper volume element $d V^{*}=w d \tau d \varphi d \eta$ isotropically as

$$
d n_{h}=f_{E} \frac{d V^{*}}{(2 \pi \hbar)^{3}} \exp \left(-\frac{\sqrt{p^{2}+m_{h}^{2}}-\mu_{h}}{T}\right) d^{3} p
$$

with f_{E} to assure energy conservation despite EbE fluctuations of core energyand then boost the momenta to the global frame

Results _ IC EPOS 1.87 Hydro Hirano PCE Tfo $=130 \mathrm{MeV}$

Results _ IC EPOS 1.87
Hydro Hirano PCE
Tfo $=130 \mathrm{MeV}$

UrQMD final state IA

Summary

\square Latest EPOS takes into account

- recent developments on nonlinear parton evolution (concerning cross sections and particle production)
- remnants ; flux tube picture
\square EPOS (carefully checked agains pp, pA) provides initial conditions for hydro
- EbyE procedure based on tabulated FO properties
- detailed comparisons with data possible (and under way)

[^0]: ${ }^{1}$ imaginary part of the corresponding amplitude in b-space
 ${ }^{2} x^{+}, x^{-}$: light cone momentum fractions of the first ladder partons

[^1]: ${ }^{4}$ not necessarily true, see recent papers by Collins

