Study of jet fragmentation with ALICE at LHC through γ-hadron correlation measurement

Yaxian Mao

ALICE Physics Workgroup: High p_T and photons

(for ALICE collaboration -- Wuhan)

Outline

- Motivation of γ-hadron correlation measurement:
 - $\,\circ\,$ Probe the medium created in HIC
 - Photons sources
- ALICE experiment: Detector performance
- Offline photon identification
- Prompt photon correlations
- Summary

- The photon 4-momentum remains unchanged by the medium and sets the reference of the hard process
- Balancing the jet and the photon provides a measurement of the medium modification experienced by the jet
- Allows to measure jets in an energy domain (E_{jet} < 50 GeV) where
 - − The jet looses a large fraction of its energy ($\Delta E_{jet} \approx 20-50 \text{ GeV}$)
 - The jet cannot be reconstructed in the AA environment

Photon sources

- Direct photons (the signal)
 - Prompt pQCD photons ($E_{\gamma} > 20 \text{ GeV}$)
 - g Compton scattering
 - qq annihilation
 - Fragmentation

Photon sources

- Direct photons (the signal)
 - Photons produced by the medium (E γ < 10 GeV)
 - Bremsstrahlung
 - Jet conversion
 - Thermal

5

- Hard scattered partons interact with the color dense medium
- The energy loss is imprinted in the fragmentation hadrons
- The medium is transparent to photons

21-24 May 2008

Strategy for a feasibility study

- Identify prompt photons with ALICE PHOS detector (PID + Isolation Cut)
- Construct γ-charged hadrons correlation from detected events (detector response)
- 3. Compare the imbalance distribution (CF) to the fragmentation function (FF)
- Do the same study in γ-jet events (signal) and jet-jet events (background).
- 5. Estimate the contribution of hadrons from underlying events
- 6. Start with pp, base line measurement in AA

Monte-Carlo data production

- γ +jet in final state $\equiv \gamma$ -jet (a) $\sqrt{s} = 14 \text{ TeV}$
 - Prompt γ is the signal under study: 6 \times 10 $^5\,$ events (5 GeV < E $_{\gamma}$ < 100 GeV)
- 2 jets in final state \equiv jet jet (a) $\sqrt{s} = 14$ TeV
 - These events constitute the background: high- $p_T \pi^{\circ}$ [O(α_s)] and fragmentation: 24 × 10⁵ events (5 GeV < E _{jet} < 200 GeV)
- ALICE offline framework AliRoot
 - Generator: PYTHIA 6.214; PDF: CTEQ4L
 - Luminosity: L_{int} = 10 pb⁻¹
 - Acceptance: two PHOS modules

 $\eta =$ [-0.13, 0.13]; $\phi =$ [259, 301]

• Colored lines are the simulation bins

- Cross section of generated photons from jet-jet events in pp@14TeV
- Colored lines are the simulation bins

- We can discriminate γ , e[±] and π° from anything else, based on:
 - CPV : Charged particle identification
 - TOF : Identification of massive low p_T particles
 - <u>EMCA</u> : Hadron rejection via <u>shower topology (SSA)</u>

Shower from:

- single photon/e : $e_1/e_2 1$
- $\pi^0 (p_{\pi 0} > 30 \text{ GeV/c}) : \frac{e_1}{e_2} > 1$

Isolation Cut (IC)

• Prompt γ are likely to be produced isolated

– Cone size

- p_T threshold car $R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ d if:
 - no particle in cone with $p_T > p_T^{thres}$
 - p_T sum in cone, $\Sigma p_T < \Sigma p_T^{\text{thres}}$
- pp collisions; R = 0.3, $\Sigma p_T^{\text{thres}}$ = 2.0 GeV/c
- Identification probability <u>98</u>%
- Misidentification 3 %

Most photons are isolated in γ -jet events, few hadrons around them are from underlying events.

Most decay/fragmentation photons are not isolated, hadrons around them are from jet fragmentation

- Estimated counting statistics in one pp run for 2 PHOS modules
- Systematic errors from misidentified π°

- Construct jets within jet finder in PYTHIA;
- Calculate fragmentation function of these jets: the distribution of charged hadrons as a function of the fraction of jet momentum $z = p_T (E_T^{jet})$ (η_0, ϕ_0)

$$\mathbf{R} = \sqrt{(\eta - \eta_0)^2 + (\phi - \phi_0)^2} = 1$$

- Requirement: reconstruction of jet energies
 - Possible in pp
 - Difficult in AA

γ-hadron correlation

- Momentum imbalance variable
 - $z_{\gamma-h} = -p_{T_h} \cdot p_{T\gamma} / |p_{T\gamma}|^2$
- In leading-order kinematics (α_s)
 - $\ z_{\gamma\text{-}h} \cong p_{T_h} \, / \, p_{T\gamma}$
- According momentum conservation,
 - $p_{T\gamma} = k_{\perp} = E_{parton}$
- Therefore,
 - (exp.) $z_{\gamma-h} \Leftrightarrow z$ (th.)

Within appropriate kinematics condition, the fragmentation function (FF) can be measured by imbalance distribution (CF) without the need to reconstruct the jet.

Kinematics condition

 Photon and hadron momenta cuts must be very asymmetric:

 p_{T_γ}^{cut} >> p_{T_h}^{cut}
Photon must be produced directly from the partonic process and not from a jet fragmentation:

isolated and $p_T^{\gamma} > 20 \text{GeV/c}$

Photon – hadrons are back to back:

 $\pi/2 < \Delta \Phi < 3\pi/2$

A near side and a far side peak found, the later being shifted and broader compared to γ -jet events.

- Based on:
 - Hadrons spatial distribution from underlying events (UE) is isotropic:

UE ($|\phi_{\gamma}-\phi_{hadron}| < 0.5 \pi$) \cong UE ($0.5\pi < |\phi_{\gamma}-\phi_{hadron}| < 1.5 \pi$)

- Strategy:
 - Calculate UE contribution on the same side as photon where there is no jet contribution

- Statistical errors correspond to one standard year of data taking with 2 PHOS modules.
- Systematic errors is contributed by decay photon contamination and hadrons from underlying events.

Summary

- Measuring the modification experienced by jets traversing the color dense medium formed in heavy-ion collisions is a valuable approach to access the medium properties
- Tagging jets with direct prompt photons is the only approach to identify low energy jets (E_{iet} < 50 GeV) in AA
- The modification is best measured in the jet fragmentation function
- The fragmentation function can be measured in photon charged hadrons correlations

Summary

- The feasibility of such a measurement with the ALICE experiment has been evaluated in pp at 14 TeV
 - identification of direct photon and rejection of decay photons (PID and isolation cut)
 - counting statistics estimated and systematic errors due to decay photons
- The measurement in pp will be dominated by systematic errors not by statistics
- Near future , different kinematics cuts and AA ...

Thanks for your attention!

Back up slides

21-24 May 2008

maoyx_Wuhan@HIP

34

