Multiple Coulomb Excitation with High Intense ⁷²Zn Beam at ISOLDE

Stefanie Hellgartner

Technische Universität München Physik Department, E12

MINIBALL Workshop and Users Meeting 2014, Orsay 9th-10th October 2014

Motivation

- ▶ ⁶⁸Ni shows some doubly magic features, e.g. high $E(2_1^+)$ and low $B(E2; 2_1^+ \rightarrow g.s.)$
- \Rightarrow Study of the proton-neutron interaction near N = 40 with a 72 Zn beam

Motivation

- ▶ ⁶⁸Ni shows some doubly magic features, e.g. high $E(2_1^+)$ and low $B(E2; 2_1^+ \rightarrow g.s.)$
- \Rightarrow Study of the proton-neutron interaction near N = 40 with a 72 Zn beam

Motivation: B(E2) values of the Zn isotopes

- Good agreement for B(E2; $2^+_1 \rightarrow 0^+_1$)
- ► But: Discrepancies for B(E2; 4⁺₁ → 2⁺₁), especially in the experimental data
- $\Rightarrow\,$ Additional measurements needed \rightarrow Coulomb excitation experiment with a ^{72}Zn beam

New experimental setup

Standard Coulex setup

Fixed CD target distance $(\theta_{lab} = 16^{\circ} - 54^{\circ})$

Coulex with T-REX setup

FCD with variable target distance

Optimize Coulex setup

- Largest possible angular coverage
- Tolerable count rates of elastically scattered particles

Photographs of the new Coulex setup

New Coulex setup in T-REX vacuum chamber

Closest distance between target and FCD: 2.35 cm

Coulomb excitation of ⁷²Zn

Coulomb excitation of the ⁷²Zn beam with a 1.17 ^{mg}/_{cm²} ¹⁰⁹Ag target (E_b = 2.85 MeV/u, 66 h good data, I_{MB} ≈ 2 · 10⁷ pps)

- ► All particles in the Silicon detectors
- \Rightarrow No clear separation between ⁷²Zn and ¹⁰⁹Ag

Identification of the ejectile and the recoil

- Particles in the Silicon detectors in coincident with a γ-ray in MINIBALL
- \Rightarrow Clear separation between ⁷²Zn and ¹⁰⁹Ag

- ⁷²Zn detected in the FCD
- Doppler correction with respect to ⁷²Zn

- ⁷²Zn detected in the FCD
- Doppler correction with respect to ⁷²Zn

- ⁷²Zn detected in the Backward Barrel
- Doppler correction with respect to ⁷²Zn

- ⁷²Zn detected in the Backward CD
- Doppler correction with respect to ⁷²Zn

Extracting nuclear structure from γ -ray peaks

- ► σ is directly connected to the reduced transition probability $B(\pi\lambda; J_i \rightarrow J_f) = \frac{1}{2J_i+1} |\langle J_i || \mathcal{M}(\pi\lambda) || J_f \rangle|^2$
- σ can be calculated from the number of counts in the γ-ray peaks:
 - ▶ Number of detected $2_1^+ \rightarrow g.s.$ ⁷²Zn γ -rays in MINIBALL:

$$N_{det}(Zn) = L \cdot \sigma(Zn) \cdot \epsilon_{MB}(Zn) \cdot \epsilon_{Si}$$

Analogue for ¹⁰⁹Ag:

$$N_{det}(Ag) = L \cdot \sigma(Ag) \cdot \epsilon_{MB}(Ag) \cdot \epsilon_{Si}$$

Luminosity *L* and efficiency *ϵ_{Si}* cannot be determined precisely ⇒ Relative measurement:

$$\frac{\sigma(\textit{Zn})}{\sigma(\textit{Ag})} = \frac{\textit{N}_{det}(\textit{Zn})}{\textit{N}_{det}(\textit{Ag})} \cdot \frac{\epsilon_{\textit{MB}}(\textit{Ag})}{\epsilon_{\textit{MB}}(\textit{Zn})}$$

Consider feeding contributions

PRELIMINARY $B(E2; 2_1^+ \rightarrow 0_1^+)$ of ⁷²Zn

PRELIMINARY quadrupole moment of ⁷²Zn Spectroscopic guadrupole moment:

$$Q_s(J) = \sqrt{\frac{16\pi}{5}} \frac{\langle JJ20|JJ\rangle}{\sqrt{2J+1}} \langle J||E2||J\rangle \quad \Rightarrow \quad Q_s(2^+_1) = 0.7579 \langle J||E2||J\rangle$$

- Detectors in backward direction have the highest sensitivity for Q_s.
- Prolate shapes are preferred in the neutron-rich Zn isotopes.

PRELIMINARY $B(E2; 4_1^+ \rightarrow 2_1^+)$ of ⁷²Zn

PRELIMINARY $B(E2; 2_2^+ \rightarrow 2_1^+, 0_1^+)$ of ⁷²Zn

PRELIMINARY $B(E2; 0^+_2 \rightarrow 2^+_1)$ of ⁷²Zn

0⁺₂-state only clearly visible in backward direction

Summary

- Good statistics to extract the most important B(E2) values of ⁷²Zn (arrow widths are proportional to B(E2)-values)
- ► Determination of the quadrupole moment Q_s(2⁺₁) → prolate shape is preferred

Thank you!

Dennis Mücher¹, Roman Gernhäuser¹, Stefanie Hellgartner (Klupp)¹, Reiner Krücken^{1,2}, Katharina Nowak¹, Vinzenz Bildstein³, Kathrin Wimmer⁴, Simone Bottoni⁵, Jytte Elseviers⁵, Freddy Flavigny⁵, Jedrzej Iwanicki¹³, Andrea Jungclaus⁶, Malin Klintefjord¹², Thorsten Kröll⁷, Rudi Lutter⁸, Riccardo Orlandi⁵, Janne Pakarinen⁹, Norbert Pietralla⁷, Riccardo Raabe⁵, Elisa Rapisarda⁵, Sebastian Reichert¹, Peter Reiter¹⁰, Markus Scheck⁷, Mirko von Schmid⁷, Michael Seidlitz¹⁰, Burkhard Siebeck¹⁰, Andrés Illana Sisón⁶, Tim Steinbach¹⁰, Nigel Warr¹⁰, Kasia Wrzosek-Lipska⁵ and Magdalena Zielinska¹¹

1 Technische Universität München - 2 TRIUMF, Vancouver -

3 University of Guelph - 4 NSCL, Michigan State University - 5 KU Leuven - 6 CSIC, Madrid - 7 IKP, Technische Universität Darmstadt -8 Fakultät für Physik, LMU München - 9 CERN, Genf -

10 IKP, Universität zu Köln - 11 CEA, Saclay - 12 University of Oslo - 13 Heavy Ion Laboratory, Warsaw University

Appendix

Save Coulex criterion

Save bombarding energy:

$$E_b(\theta_{CM}) = 0.72 \cdot \frac{Z_p Z_t}{D_{min}} \cdot \frac{A_p + A_t}{A_t} \left[1 + \frac{1}{\sin(\theta_{CM}/2)} \right] \quad [MeV]$$
with $D_{min} = 1.25 \cdot (\sqrt[3]{A_p} + \sqrt[3]{A_t}) + 5$
Beam energy of ⁷²Zn: 205 MeV

