Coulomb Excitation of neutron-rich Cd Isotopes

Anna-Lena Hartig for the IS411/IS477/IS524 collaborations

Xe^{122}	$\overset{123}{\mathbf{Xe}}$	Xe	Xe	$\overset{126}{\mathrm{Xe}}$	$\overset{127}{\mathrm{Xe}}$	$\overset{128}{\mathrm{Xe}}$	129 Xe	130 Xe	$\overset{131}{\mathrm{Xe}}$	$\overset{132}{\mathrm{Xe}}$	133 Xe	$\overset{134}{\mathrm{Xe}}$	¹³⁵ Xe	$\overset{136}{\mathrm{Xe}}$	$\overset{137}{\mathbf{Xe}}$	$\overset{138}{\mathbf{Xe}}$	139 Xe	$\overset{140}{\text{Xe}}$
121 I	122 I	123 I	124 I	125 I	126 I	127 I	128 I	129 I	130 I	131 I	132 I	133 I	134 I	135 I	136 I	137 I	138 I	139 I
${\overset{120}{\mathrm{Te}}}$	Te^{121}	Te ¹²²	${\overset{123}{{ m Te}}}$	Te ¹²⁴	$\overset{125}{\mathrm{Te}}$	${\overset{126}{\mathrm{Te}}}$	Te ¹²⁷	${\overset{128}{\text{Te}}}$	129 Te	$\overset{130}{\mathrm{Te}}$	$\overset{131}{\text{Te}}$	\mathbf{T}^{132}	¹³³ Te	$\stackrel{134}{\text{Te}}$	¹³⁵ Te	¹³⁶ Te	¹³⁷ Te	¹³⁸ Te
	120 Sb	$\overset{121}{\mathbf{Sb}}$		\mathbf{Sb}^{123}		¹²⁵ Sb	$\overset{126}{\mathbf{Sb}}$		¹²⁸ Sb	129 Sb	$\overset{130}{\mathbf{Sb}}$	¹³¹ Sb	¹³² Sb	$\overset{133}{\mathbf{Sb}}$	¹³⁴ Sb	¹³⁵ Sb	136 Sb	¹³⁷ Sb
${\overset{118}{\mathrm{Sn}}}$	${\overset{119}{\mathrm{Sn}}}$	$\overset{120}{\mathrm{Sn}}$		${\stackrel{\scriptstyle 122}{{ m Sn}}}$		${\overset{124}{\mathbf{Sn}}}$		¹²⁶ Sn	¹²⁷ Sn	¹²⁸ Sn	¹²⁹ Sn	\mathbf{Sn}^{130}	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn	¹³⁵ Sn	¹³⁶ Sn
117 In	In In	In ¹¹⁹	120 In	In In	122 In	123 In	124 In	125 In	¹²⁶ In	127 In	¹²⁸ In	129 In	130 In	¹³¹ In	132 In	133 In	134 In	135 In
$\overset{116}{\mathrm{Cd}}$	$\overset{117}{\text{Cd}}$	$\overset{118}{\mathbf{Cd}}$	$\overset{119}{\text{Cd}}$	$\overset{120}{\text{Cd}}$	\mathbf{Cd}^{121}	Cd	Cd	$\overset{124}{\text{Cd}}$	$\overset{125}{\text{Cd}}$	$\overset{126}{\text{Cd}}$	$\overset{127}{\text{Cd}}$	$\overset{128}{\text{Cd}}$	$\overset{129}{\text{Cd}}$	$\overset{130}{\text{Cd}}$	$\overset{131}{\mathbf{Cd}}$	$\overset{132}{\mathbf{Cd}}$		
$\overset{115}{\mathrm{Ag}}$	$\stackrel{\scriptscriptstyle 116}{\operatorname{Ag}}$	Ag	$\stackrel{\scriptstyle118}{\operatorname{Ag}}$	Ag	$\stackrel{120}{\mathrm{Ag}}$	Ag	Ag	$\stackrel{123}{\text{Ag}}$	Ag	Ag	$\stackrel{126}{\mathrm{Ag}}$	Ag	$\stackrel{128}{\mathrm{Ag}}$	$\stackrel{129}{\operatorname{Ag}}$	$\stackrel{130}{\mathrm{Ag}}$			
\mathbf{P}^{114}	115 Pd	$\mathbf{P}^{116}_{\mathbf{P}}$	117 Pd	$\mathbf{P}^{118}_{\mathbf{D}}$	119 Pd	$\mathbf{P}^{120}_{\mathbf{P}}$	\mathbf{P}^{121}	$\mathbf{P}^{122}_{\mathbf{P}}$	123 Pd	$\mathbf{P}^{124}_{\mathbf{P}\mathbf{d}}$								
113 Rh	\mathbf{R}^{114}	Rh	\mathbf{R}^{116}	¹¹⁷ Rh	\mathbf{R}^{118}	119 Rh	Rh	¹²¹ Rh	¹²² Rh		•							

Neutron-rich Cd Isotopes

- ► E(2⁺) drops from ¹²⁶Cd to ¹²⁸Cd
 - Not reproduced by SM

Neutron-rich Cd Isotopes

E(2⁺) drops from ¹²⁶Cd to ¹²⁸Cd

- Not reproduced by SM
- Beyond Mean Field reproduces the trend of E(2⁺)

T. Rodríguez, then TU Darmstadt

Analysis of ¹²⁸Cd

S. Bönig, PhD thesis, TU Darmstadt, 2014

Analysis of ¹²⁸Cd

S. Bönig, PhD thesis, TU Darmstadt, 2014

Results for the even-A Cd Isotopes

09.10.2014 | TU Darmstadt | Anna-Lena Hartig | 4

Adopted Level Scheme for ¹²³Cd (Excerpt)

H. Huck, Phys. Rev. C 40, 1384 (1989) http://www.nndc.bnl.gov/ensdf/

09.10.2014 | TU Darmstadt | Anna-Lena Hartig | 5

Mass Measurement of the Isomeric State

A. Kankainen, Phys. Rev. C, 87:024307, Feb 2013

- Mass measurement with JYFLTRAP
 - Time-of-Flight Ion Cyclotron Resonance Technique
 - New value for the 11/2⁻-state 144(4) keV

A. Kankainen, Phys. Rev. C, 87:024307, Feb 2013

Conflict with 316.52 keV
 H. Huck, Phys. Rev. C 40, 1384 (1989)

Determined Level Scheme for ¹²³Cd

Matrix Elements

 Quadrupole moments from D. T. Yordanov, Phys. Rev. Lett., 110:192501, May 2013

Matrix Elements

Summary

- Revision of adopted level scheme
- Negative and positive parity orbitals contribute to collectivity

- B(E2) values larger than expected from SM
- Better agreement with BMF
- No clear conclusion due to Q(2⁺)

- Decay spectroscopy with IDS to determine level scheme
- Narrow-band laser scans in future experiments

Thank you for your attention!

Supported by:

Bundesministerium für Bildung und Forschung

(262010)

and the IS524-Miniball Collaboration

(06DA9036I, 05P12RDCIA)

Selective Laser Ionization

TECHNISCHE UNIVERSITÄT DARMSTADT

Ratio of isomeric to ground state

Share of ground state in all events

Determination of Isomeric Concentration

09.10.2014 | TU Darmstadt | Anna-Lena Hartig | 13

Calculated Transition Strengths

E_{γ} in keV	Matrix element	reduced transition probability						
117	0,92 eb	$B(E2,3/2^+ ightarrow 1/2^+)$	0,212(19) e ² b ²					
349	0,787 μ_{N}	$B(M1,1/2^+ ightarrow 1/2^+)$	0,309(30) μ_N^2					
466	0,54 eb	$B(E2,3/2^{\scriptscriptstyle +} ightarrow 1/2^{\scriptscriptstyle +})$	0,0729(116) e ² b ²					
412	0,85 μ_{N}	$B(M1,1/2^{\scriptscriptstyle +} ightarrow 3/2^{\scriptscriptstyle +})$	0,361(36) μ_N^2					
529	0,55 eb	$B(E2,3/2^{\scriptscriptstyle +} ightarrow 3/2^{\scriptscriptstyle +})$	0,0756(214) e ² b ²					
555	0,271 eb	$B(E2,1/2^{\scriptscriptstyle +} ightarrow 3/2^{\scriptscriptstyle +})$	0,0367(81) e ² b ²					
672	0,71 eb	$B(E2,3/2^{\scriptscriptstyle +} ightarrow 5/2^{\scriptscriptstyle +})$	0,126(19) e ² b ²					
123	0,182 eb	$B(E2, 11/2^- ightarrow 9/2^-)$	0,00279(24) e ² b ²					
253	0,208 μ _N	$B(M1,9/2^- ightarrow9/2^-)$	0,00433(41) μ_N^2					
376	0,501 eb	$B(E2, 11/2^- \rightarrow 9/2^-)$	0,0209(17) e ² b ²					

Determination of Isomeric Concentration

Koinzidenz mit 117 keV

