Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

Simone Bottoni

University of Milano and INFN KU Leuven - Instituut voor Kern- en Stralingsfysica

Orsay – 9 October 2014

Introduction:

• Cluster-transfer reactions with RIB's

The ISOLDE pilot experiment

- ${}^{98}\text{Rb}/{}^{98}\text{Sr}+{}^{7}\text{Li}$
- The experiment
- Gamma spectroscopy
- Reaction dynamics

Conclusions and future perspectives

Test of a new reaction mechanism with RIB's to populate neutron-rich nuclei at medium-high energy and spin

Test of a new reaction mechanism with RIB's to populate neutron-rich nuclei at medium-high energy and spin

A possible mechanism to populate low-lying medium spin states around closed shells

Cluster – transfer reactions with RIB's

FROM DIRECT KINEMATICS ⁷Li + STABLE TARGETS

- Sizable cross section of cluster-transfer
- Favorable capture of t and emission of α
- Evaporation of 1-2n
- Population of neutron rich systems
- **Population of off Yrast states**
- Intermediate spins up to 12 ħ

G.D. Draculis et al., JPG 23 (1997), 1191 D.S. Judson et al., PRC 76 (2007), 054306 R.M. Clark et al., PRC 72 (2005), 054605

$\bullet \bullet \bullet \circ \circ \circ \circ \circ \circ \circ$

CLUSTER-TRANSFER REACTIONS WITH RIB's: the ISOLDE pilot experiment

⁹⁸Rb+⁷Li

⁹⁸Rb/⁹⁸Sr+⁷Li @ 2.5 MeV/A

(a) the Coulomb Barrier1.5 mg/cm² LiF

⁹⁸Rb/⁹⁸Sr+⁷Li @ 2.5 MeV/A @ the Coulomb Barrier 1.5 mg/cm² LiF

- beam intensity $\approx 2 \cdot 10^4$ pps
- beam time: 3 days

CD silicon detector

 $22^{\circ} < \theta_{lab} < 62^{\circ}$

MINIBALL

Reactions took place on both Rb and Sr

- Elastic scattering
- Inelastic scattering
- 1p pick-up
- t-transfer
 - α-transfer
 - α-t breakup (< 20 %)
- ⁶Li → α-d breakup
- **Fusion evaporation**

• Elastic scattering

- Inelastic scattering
- 1p pick-up
- t-transfer
 - α-transfer
 - α-t breakup (< 20 %)
- ⁶Li → α-d breakup
- **Fusion evaporation**

30 **Elastic scattering** ⁷Li • **Inelastic scattering** . 50 ⁶He 1p pick-up • 800 20 ⁹⁸Sr AE [MeV] $2^+ \rightarrow 0^+$ 40 600 t-transfer **C** . Counts Counts ⁹⁸Rb Counts 20 **α-transfer** 200 • 20 50 100 150 200 E_{γ} [keV] **α-t breakup (< 20 %)** . 10 10 ⁶Li → α-d breakup • 0 d 250 300 350 400 50 100 150 200 0 E_{γ} [keV] р **Fusion - evaporation** • U 10 20 30 40 50 60 0 E [MeV]

- Elastic scattering
- Inelastic scattering
- 1p pick-up
- <u>t-transfer</u>
- <u>α-transfer</u>
- α-t breakup (< 20 %)
- ⁶Li → α-d breakup
- **Fusion evaporation**

- Elastic scattering
- Inelastic scattering
- 1p pick-up
- t-transfer
- α-transfer
- <u>α-t breakup (< 20 %)</u>
- ⁶Li → α-d breakup
- **Fusion evaporation**

$\gamma - \gamma$ coincidences

CHANNELS OBSERVED

- Elastic scattering
- Inelastic scattering
- 1p pick-up
- t-transfer
- α-transfer
- α-t breakup (< 20 %)
- ⁶Li → α-d breakup
- Fusion evaporation

 ${}^{98}\text{Rb} + {}^{7}\text{Li} = {}^{105}\text{Zr}*$ -5n = ${}^{100}\text{Zr}$

Cluster – transfer channels: y spectroscopy

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ$

Cluster – transfer channels: γ spectroscopy

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ$

Simone Bottoni – UNIMI – KU Leuven

Cluster – transfer channels: γ spectroscopy

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ$

CASCADE

⁷Li g.s. WAVE FUNCTION

- αt in a relative P-state
- Gaussian potential with a volume and s.o term

FINAL STATES WAVE FUNCTIONS

- Excitation energy higher than ⁹⁸Rb fragment separation energy
- weakly bound states close to the continuum

Cluster – transfer channels: reaction dynamics

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ$

⁷Li g.s. WAVE FUNCTION

- αt in a relative P-state
- Gaussian potential with a volume and s.o term

$$2(N-1) + L = \sum_{i} (2(n_i - 1) + l_i)$$

FINAL STATES WAVE FUNCTIONS

- Excitation energy higher than ⁹⁸Rb fragment separation energy
- weakly bound states close to the continuum

- 1 step DWBA
- Post rappresentation
- W.S. potentials for incoming and outgoing channels
- Several states with different angular momenta and excitation energies

FRESCO

Cluster – transfer channels: reaction dynamics

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ$

Cluster - transfer channels: reaction dynamics

3 $E*_{opt} = 18.7 \text{ MeV}$ (a) = 16 MeV do/dE [Arb.Un./MeV] t-transfer 2 B.E. Exp 1 Theo 0 $E_{opt}^* = 18 \text{ MeV}$ (b) 10 MeV do/dE [Arb.Un./MeV] 0.4 || a-transfer В. E. 0.3 0.2 🗖 Exp Theo 0.1 0.0 5 10 25 30 15 20 0 E* [MeV]

	<i>t</i> -transfer	α -transfer
$\mathbf{Q}_{gg}~[\mathrm{MeV}]$	13.6	7.6
\mathbf{Q}_{opt} [MeV]	-5.1	-10.4
E^*_{opt} [MeV]	18.7	18
B.E. [MeV]	16	10

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ$

FROM EXPERIMENTAL DATA within 20 °

 $\begin{aligned} \sigma_{t-transfer} &= 26.6 \pm 0.7 \text{ mb} \\ \sigma_{\alpha-transfer} &= 5.3 \pm 0.2 \text{ mb} \end{aligned}$

Conclusions

Cluster-transfer reactions with RIB's in inverse kinematics:

• A possible mechanism to populate medium-high energy and spin states in neutron – rich nuclei

The ISOLDE pilot experiment*

- ⁹⁸Rb/⁹⁸Sr+⁷Li @ 2.5 MeV/A
- In beam γ spectroscopy limited by the low beam intensity
- Reaction dynamics pointing out to the direct nature of the process
- Improvements by considering the coupling to other channels and a proper representation of the states in the continuum

Future perspectives:

• Same experimental technique to populate even more neutron – rich nuclei with the new generation of radioactive beams at CARIBU, HIE –ISOLDE, SPIRAL2, SPES etc.

CARIBU: 104 Zr + 7 Li @ 3.5 MeV/A

HIE - ISOLDE: ¹³²Sn + ⁷Li @ 4 MeV/A

*S. Bottoni et al., Acta Phys. Pol. B 45, 343 (2014) *S. Bottoni et al., Phys. Rev. C to be submitted S. Bottoni^{1,2,4}, S. Leoni^{1,2}, B. Fornal³, R. Raabe⁴, K. Rusek⁵, G. Benzoni², A. Bracco^{1,2}, F. C. L. Crespi^{1,2}, A. I. Morales², B. Bednarczyk³, N. Cieplika³, W. Królas³, A. Maj³, B. Szpak³, M. Callens⁴, J. Bouma⁴, J. Elseviers⁴, F. Falvigny⁴, R. Orlandi⁴, P. Reiter⁶, M. Seidlitz⁶, S. Hellgartner⁷, D. Mücher⁷, G. Georgiev⁸, D. Balabanski⁹, M. Sferrazza¹⁰, M. Kowalska¹¹, E. Rapisarda¹¹ and the MINIBALL-T-REX collaboration. ¹Università degli Studi di Milano, Milano, Italy ²INFN sezione di Milano, Milano, Italy ³The Niewodniczanski Institute of Nuclear Physics, Kraków, Poland ⁴Instituut voor Kern- en Stralingsfysisca, KU Leuven, Leuven, Belgium ⁵Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland ⁶Institut für Kernphysik der Universität zu Köln, Köln, Germany ⁷Physik Department, Technische Universität München, München , Germany ⁸CSNSM, Orsay, France ⁹IRNE-BAS, Sofia, Bulgaria ¹⁰Université libre de Bruxelles, Bruxelles, Belgium ¹¹ISOLDE, CERN, Geneve, Switzerland

Thank you for your attention

Simone Bottoni

University of Milano and INFN KU Leuven - Instituut voor Kern- en Stralingsfysica

Orsay – 9 October 2014

EXTRA SLIDES

Simone Bottoni

University of Milano and INFN KU Leuven - Instituut voor Kern- en Stralingsfysica

- Elastic scattering
- Inelastic scattering
- <u>1p pick-up</u>
- t-transfer
 - α-transfer
 - α-t breakup (< 20 %)
- ⁶Li → α-d breakup
- **Fusion evaporation**

- Elastic scattering
- Inelastic scattering
- 1p pick-up
- t-transfer
 - α-transfer
 - α-t breakup (< 20 %)
- <u>⁶Li → α-d breakup</u>
- **Fusion evaporation**

- **1.4 GeV protons from PS BOOSTER**
- **Primary target: UCx**
- Inoziation
- **Mass separation: GPS and HRS** .
- **Post acceleration: REX ISOLDE** ٠

The ISOLDE pilot experiment: REX-ISOLDE

$\bullet \bullet \bullet \bullet \circ \circ \circ \circ \circ \circ$

The ISOLDE pilot experiment: experimental setup

MINIBALL array

The ISOLDE pilot experiment: MINIBALL

CD Silicon detector

$\bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ \circ \circ$

The ISOLDE pilot experiment: CD Silicon detector

- DSSSD detector
- ΔE E configuration
- 16 position sensitive anular strips (rings)
- 24 position sensitive sector strips
- Energy, position and time signals

Two – body kinematics ⁹⁸Rb+⁷Li @ 2.5 MeV/A

Particle kinematics

$\bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ \circ \circ$

Two – body kinematics ⁹⁸Rb+⁷Li @ 2.5 MeV/A

Particle kinematics

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ$

Elastic scattering used to cross check target-CD distance

Final distance = 22mm

Particle – γ coincidences

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ$

Particle – γ coincidences

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ$

The ISOLDE pilot experiment: REX-ISOLDE

$\bullet \bullet \bullet \bullet \circ \circ \circ \circ \circ \circ$

104 Zr+ 7 Li

¹⁰⁴Zr+⁷Li @ 3.5 MeV/A ANL - CARIBU

¹⁰⁴Zr is a unique beam produced at CARIBU that can not be produced by ISOL technique

Cluster - transfer

Prolate – Oblate shape transitions

- Collective structures
- Shape isomer _{F.Xu}

- Elastic scattering
- Inelastic scattering
- 1p pick-up
- t-transfer
- α-transfer
- α-t breakup (< 20 %)
- ⁶Li → α-d elastic breakup
- **Fusion evaporation**

• Total wave function:

 $\psi_{tot} = \varphi_A(r) \chi_a(R_a) + \varphi_B(r') \chi_\beta(R_\beta)$

• Cross section:

 $\sigma \sim \langle \varphi_{B} \chi_{\beta} | V_{int} | \varphi_{A} \chi_{a} \rangle$

• Internal states:

Cluster model (e.g. ⁷Li=a_core+t):

Simone Bottoni – UNIMI – KU Leuven

Simone Bottoni – UNIMI – KU Leuven

$$\psi_{tot} = \varphi_{Li} \chi_{\alpha} + \varphi_{Sr} \chi_{\beta}$$

$$\stackrel{?}{}_{\text{Li}} \stackrel{r}{}_{r} \stackrel{(1)}{}_{r} \stackrel{$$

t – transfer (98 Rb)

$$\frac{d\sigma}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{2\pi\hbar^{2}} \left(\frac{k_{\beta}}{k_{\alpha}}\right) |T|^{2} \qquad T_{POST} = \langle \chi_{\beta}\varphi_{Sr} |V_{\alpha-t}| \chi_{\alpha}\varphi_{Li} \rangle$$

 $H_{Li}\varphi_{Li} = \varepsilon_{Li}\varphi_{Li}$ $H_{Sr}\varphi_{Sr} = \varepsilon_{Sr}\varphi_{Sr}$

$$U_{Rb-Li}$$
 and $U_{Sr-\alpha}$

 $U(R) = U_{\rm nuc}(R) + U_{\rm coul}(R)$

$$U_c(R) = \begin{cases} \frac{Z_1 Z_2 e^2}{2R_c} \left(3 - \frac{R^2}{R_c^2}\right) & \text{if } R \le R_c \\ \frac{Z_1 Z_2 e^2}{R} & \text{if } R \ge R_c \end{cases}$$

$$U_{\text{nuc}}(R) = V(r) + iW(r) = -\frac{V_0}{1 + \exp\left(\frac{R - R_0}{a_0}\right)} - i \frac{W_0}{1 + \exp\left(\frac{R - R_i}{a_i}\right)}$$

Simone Bottoni - UNIMI & KU Leuven

$$V_{\alpha-t}$$

 $U(R) = U_{\rm nuc}(R) + U_{\rm coul}(R)$

Continuum

Resonant states: $sin\delta_l e^{-i\delta_l}$

Simone Bottoni – UNIMI & KU Leuven

Channel	V(MeV)	$r_V(fm)$	$a_V(fm)$	W(MeV)	$\mathrm{r}_W(\mathrm{fm})$	$\mathrm{a}_W(\mathrm{fm})$	${ m R}_C({ m fm})$
$^{7}\mathrm{Li}+ ^{98}\mathrm{Rb}$	114.2	1.286	0.853	15.643	1.739	0.809	5.994
$\alpha + {}^{101}\mathbf{Sr}$	140.0	1.200	1.200	10.0	1.200	1.200	6.054
$t + {}^{102}Y$	80.0	1.250	1.500	10.0	1.250	1.500	6.074

The PRISMA – CLARA experimental setup @ LNL

Particle - γ coincidence measurements

Data analysis – Ions identification

Data analysis – Reaction studies

Data analysis – γ spectroscopy

Inelastic cross sections

G. Benzoni et al., Eur. Phys. J. A 45, 287-292 (2010)

Data analysis – Nuclear structure studies

Deformation parameters

$$\beta_2^C = (4\pi/3ZR_0^2)[B(E2; 0^+ \to 2^+)/e^2)]^{1/2}$$

²⁴Ne is a nucleus of key importance in the study of shell evolution towards the "island of invertion"