# Results from <sup>140</sup>Sm Coulomb excitation experiment

<u>M. Klintefjord</u>, <u>F.L. Bello-Garrote</u>, A. Görgen, K. Hadyńska-Klęk,

J. Samorajczyk, C. Droste, J. Srebrny,

T. Abraham, F. Giacoppo, E. Grodner, P. Hoff, M. Kisielinski, M. Komorowska, W. Korten,

M. Kowalczyk, J. Kownacki, T. Marchlewski, C. Mihai , I.O. Mitu, P. Napiorkowski,

S. Pascu, T. Renstrom, B. Siebeck, S. Siem, A. Stolarz, R. Szenborn, A. Tucholski, P. Töle,

T. Tornyi, G.M. Tveten, M. Zielińska

Oslo – Warsaw-Łódź

# The structure of low-lying states in <sup>140</sup>Sm

status of COULEX-IS495, RDDS lifetime and the  $\gamma$ - $\gamma$  angular correlation experiments

M. Klintefjord, F.L. Bello-Garrote, A. Görgen, K. Hadyńska-Klęk,

J. Samorajczyk, C. Droste, J. Srebrny,

T. Abraham, F. Giacoppo, E. Grodner, P. Hoff, M. Kisielinski, M. Komorowska, W. Korten, M. Kowalczyk, J. Kownacki, T. Marchlewski, C. Mihai, I.O. Mitu, P. Napiorkowski,
S. Pascu, T. Renstrom, B. Siebeck, S. Siem, A. Stolarz, R. Szenborn, A. Tucholski, P. Töle, T. Tornyi, G.M. Tveten, M. Zielińska

Oslo – Warsaw-Łódź

### Motivation



The ground-state shapes predicted by a Hartree-Fock-Bogolyubov (HFB) calculation with the Gogny D1S effective interaction.

Rapid GS shape changes in some regions

Nuclear shape can change within the same nucleus - nuclear states of different deformation, close in energy – their wave functions can mix – <u>shape</u> <u>coexistance</u>.

### Motivation



The ground-state shapes predicted by a Hartree-Fock-Bogolyubov (HFB) calculation with the Gogny D1S effective interaction.

Rapid GS shape changes in some regions

Nuclear shape can change within the same nucleus - nuclear states of different deformation, close in energy – their wave functions can mix – <u>shape</u> <u>coexistance</u>.

Measurement of collective properties:

- 1. Coulomb excitation  $\Rightarrow$  B(E2), Q<sub>s</sub>
- 2. Lifetime measurements  $\Rightarrow$  B(E2)

### Motivation



The ground-state shapes predicted by a Hartree-Fock-Bogolyubov (HFB) calculation with the Gogny D1S effective interaction.

Rapid GS shape changes in some regions

Nuclear shape can change within the same nucleus - nuclear states of different deformation, close in energy – their wave functions can mix – <u>shape coexistance</u>.

**Measurement of collective properties:** 

- 1. Coulomb excitation  $\Rightarrow$  B(E2), Q<sub>s</sub>
- 2. Lifetime measurements  $\Rightarrow$  B(E2)

test of nuclear structure theory

M.Girod, J.-P.Delaroche CEA Bruyères-le-Châtel

### **Previous experimental results**



W. Starzecki et al. Phys. Lett. B 200, 419 (1988)

### **Previous experimental results**



Phys. Lett. B 200, 419 (1988)

PRC 43, 1066 (1991)

### **Previous experimental results**



### <sup>140</sup>Sm – COULEX (Miniball@ISOLDE)

- Coulomb excitation experiment
- <sup>140</sup>Sm + <sup>94</sup>Mo
- <sup>140</sup>Sm obtained at ISOLDE with Resonant Laser Ionization
- Beam energy: 2.85 MeV/nucleon and intensity: 2\*10<sup>5</sup> particles/s



### <sup>140</sup>Sm – COULEX (Miniball@ISOLDE)

- Coulomb excitation experiment
- <sup>140</sup>Sm + <sup>94</sup>Mo
- <sup>140</sup>Sm obtained at ISOLDE with Resonant Laser Ionization
- Beam energy: 2.85 MeV/nucleon and intensity: 2\*10<sup>5</sup> particles/s
- photons detected in MINIBALL array
- Particles detected in circular DSSSD angular range: 20-58°



### <sup>140</sup>Sm – COULEX (Miniball@ISOLDE)



E [keV]





### <sup>140</sup>Sm – COULEX

GOSIA2 analysis, target normalization approach





### <sup>140</sup>Sm – COULEX

GOSIA2 analysis, target normalization approach



| $\begin{array}{c} \mathbf{B}(E2; I_i \to I_f) \\ (W.U.) \end{array}$ | $\begin{array}{c} \mathbf{B}(E2;I_i \to I_f) \\ (e^2 b^2) \end{array}$ | $\begin{array}{c} \mathcal{M}(E2; I_i \to I_f) \\ (eb) \end{array}$ | $I_f$                | $I_i$       |
|----------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|-------------|
| $58^{+5}_{-5}$                                                       | $0.25_{-0.02}^{+0.02}$                                                 | $1.12_{-0.05}^{+0.05}$                                              | $2^+_1 0^+_1$        | $2_{1}^{+}$ |
| -                                                                    | -                                                                      | $-0.18^{+0.43}_{-0.29}$                                             | $2^+_1 2^+_1$        | $2^{+}_{1}$ |
| $70^{+5}_{-5}$                                                       | $0.30_{-0.02}^{+0.02}$                                                 | $1.64_{-0.05}^{+0.05}$                                              | $^+_1 2^+_1$         | $4_{1}^{+}$ |
| $236^{+35}_{-35}$                                                    | $1.02\substack{+0.15\\-0.15}$                                          | $1.01\substack{+0.07\\-0.07}$                                       | $\binom{+}{2} 2_1^+$ | $(0^+_2)$   |



### <sup>140</sup>Sm – COULEX

GOSIA2 analysis, target normalization approach



| $I_i$       | $I_f$       | $\begin{array}{c} \mathcal{M}(E2;I_i \to I_f) \\ (eb) \end{array}$ | $\begin{array}{c} \mathbf{B}(E2;I_i \to I_f) \\ (e^2 b^2) \end{array}$ | $\begin{array}{c} \mathbf{B}(E2; I_i \to I_f \\ (W.U.) \end{array}$ |
|-------------|-------------|--------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|
| $2^+_1$     | $0^+_1$     | $1.12^{+0.05}_{-0.05}$                                             | $0.25\substack{+0.02\\-0.02}$                                          | $58^{+5}_{-5}$                                                      |
| $2^{+}_{1}$ | $2^{+}_{1}$ | $-0.18^{+0.43}_{-0.29}$                                            | -                                                                      | -                                                                   |
| $4_{1}^{+}$ | $2^{+}_{1}$ | $1.64_{-0.05}^{+0.05}$                                             | $0.30_{-0.02}^{+0.02}$                                                 | $70^{+5}_{-5}$                                                      |
| $(0^+_2)$   | $2^+_1$     | $1.01\substack{+0.07\\-0.07}$                                      | $1.02\substack{+0.15\\-0.15}$                                          | $236^{+35}_{-35}$                                                   |



### <sup>140</sup>Sm - RDDS measurement EAGLE+Köln-Bucharest plunger@HIL Warsaw

Analysis: F.L. Bello Garrote, Univ. of Oslo (to be published)

#### Goal: liteftime of 2<sup>+</sup> state in <sup>140</sup>Sm

Reaction: <sup>124</sup>Te(<sup>20</sup>Ne,4n)<sup>140</sup>Sm at 82 MeV (just above the Coulomb barrier!) – very difficult experiment

gate on flying component of 715 keV [4<sup>+</sup>  $\rightarrow$  2<sup>+</sup> transition]

#### EAGLE array:

6+

4+

2\*

0+

2082

1246

531

715

GAMMAPOOL HPGe detectors in ACS

- 4 detectors at 37 deg. (forwards)
- 5 detectors at 143 deg. (backwards)



Bucharest Plunger C. Mihai et al.



### <sup>140</sup>Sm - RDDS measurement EAGLE+Köln-Bucharest plunger@HIL Warsaw

Analysis: F.L. Bello Garrote, Univ. of Oslo (to be published)

#### Goal: liteftime of 2<sup>+</sup> state in <sup>140</sup>Sm

Reaction: <sup>124</sup>Te(<sup>20</sup>Ne,4n)<sup>140</sup>Sm at 82 MeV (just above the Coulomb barrier!) – very difficult experiment

#### **EAGLE** array:

6+

4+

2\*

0+

2082

1246

531

715

GAMMAPOOL HPGe detectors in ACS

- 4 detectors at 37 deg. (forwards)
- 5 detectors at 143 deg. (backwards)

**Bucharest Plunger** C. Mihai et al.



| $I_i$       | $I_f$       | $\begin{array}{c} \mathrm{M}(E2;I_i \to I_f) \\ (eb) \end{array}$ | $\begin{array}{c} \mathbf{B}(E2;I_i \to I_f) \\ (e^2 b^2) \end{array}$ | $\begin{array}{c} \mathbf{B}(E2; I_i \to I_f) \\ (W.U.) \end{array}$ |
|-------------|-------------|-------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|
| $2^+_1$     | $0_{1}^{+}$ | $1.03\substack{+0.04\\-0.03}$                                     | $0.21\substack{+0.02\\-0.01}$                                          | $49_{-3}^{+4}$                                                       |
| $2^+_1$     | $2^+_1$     | $-0.40\substack{+0.34\\-0.23}$                                    |                                                                        | -                                                                    |
| $4_{1}^{+}$ | $2_{1}^{+}$ | $1.62_{-0.05}^{+0.05}$                                            | $0.29_{-0.02}^{+0.02}$                                                 | $67^{+5}_{-5}$                                                       |
| $(0^+_2)$   | ) $2^+_1$   | $0.99\substack{+0.07\\-0.07}$                                     | $0.99_{-0.14}^{+0.15}$                                                 | $229^{+35}_{-32}$                                                    |

| $I_i$       | $I_f$       | $\begin{array}{c} \mathrm{M}(E2;I_i \to I_f) \\ (eb) \end{array}$ | $\begin{array}{c} \mathbf{B}(E2; I_i \to I_f) \\ (e^2 b^2) \end{array}$ | $\begin{array}{c} \mathbf{B}(E2; I_i \to I_f) \\ (W.U.) \end{array}$ |
|-------------|-------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|
| $2^+_1$     | $0_{1}^{+}$ | $1.03_{-0.03}^{+0.04}$                                            | $0.21\substack{+0.02\\-0.01}$                                           | $49_{-3}^{+4}$                                                       |
| $2^+_1$     | $2^+_1$     | $(-0.40^{+0.34}_{-0.23})$                                         | -                                                                       | -                                                                    |
| $4_{1}^{+}$ | $2^+_1$     | $1.62^{+0.05}_{-0.05}$                                            | $0.29\substack{+0.02\\-0.02}$                                           | $67^{+5}_{-5}$                                                       |
| $(0^+_2)$   | $) 2^+_1$   | $0.99\substack{+0.07\\-0.07}$                                     | $0.99_{-0.14}^{+0.15}$                                                  | $229^{+35}_{-32}$                                                    |

| $I_i$       | $I_f$       | $\begin{array}{c} \mathrm{M}(E2;I_i \to I_f) \\ (eb) \end{array}$ | $\begin{array}{c} \mathbf{B}(E2;I_i \to I_f) \\ (e^2 b^2) \end{array}$ | $\begin{array}{c} \mathbf{B}(E2; I_i \to I_f) \\ (W.U.) \end{array}$ |
|-------------|-------------|-------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|
| $2^{+}_{1}$ | $0_{1}^{+}$ | $1.03_{-0.03}^{+0.04}$                                            | $0.21\substack{+0.02\\-0.01}$                                          | $49^{+4}_{-3}$                                                       |
| $2^+_1$     | $2^+_1$     | $-0.40^{+0.34}_{-0.23}$                                           |                                                                        | -                                                                    |
| $4_{1}^{+}$ | $2^+_1$     | $1.62_{-0.05}^{+0.05}$                                            | $0.29_{-0.02}^{+0.02}$                                                 | $67^{+5}_{-5}$                                                       |
| $(0^+_2)$   | $2^+_1$     | $0.99\substack{+0.07\\-0.07}$                                     | $0.99_{-0.14}^{+0.15}$                                                 | $229^{+35}_{-32}$                                                    |



### <sup>140</sup>Sm – $\gamma_{-\gamma}$ angular correlation @ HIL Warsaw

Analysis: Malin Klintefjord, Univ. of Oslo Justyna Samorajczyk, Univ. of Lodz

<sup>112</sup>Cd(<sup>32</sup>S,p3n)<sup>140</sup>Eu

•off-beam experiment using macrostructure of U200P: 2 ms on – 4 ms off

•EAGLE: 12 HPGe detectors at 42, 70, 110, 140, 180 degrees

•The <sup>140</sup>Eu recoils were stopped with a Au foil











(to be published)

# <sup>140</sup>Sm – COULEX – 3<sup>rd</sup> (final) approach

Matrix elements and B(E2) values in  $^{140}$ Sm with correlated errors obtained assuming (2<sup>+</sup> <sub>2</sub>) state at 990keV.

| $I_i$ | lf               | Without lifetime                 |                                 |                    | With li                         | fetime                        |                  |
|-------|------------------|----------------------------------|---------------------------------|--------------------|---------------------------------|-------------------------------|------------------|
|       |                  | M( <i>E</i> 2)                   | B(E)                            | 2)                 | M( <i>E</i> 2)                  | B(E                           | 2)               |
|       |                  | eb                               | $e^2b^2$                        | W.U.               | eb                              | $e^2b^2$                      | W.U.             |
| 2+    | $0_{1}^{+}$      | $1.12^{+0.03}_{-0.02}$           | $0.25\substack{+0.01\\-0.01}$   | 58 <mark>+7</mark> | $1.03\substack{+0.04 \\ -0.03}$ | $0.21\substack{+0.02\\-0.01}$ | $49^{+4}_{-3}$   |
| 2+    | $2_{1}^{+}$      | $+0.06\substack{+0.54 \\ -0.20}$ | <b>_</b> .                      | -                  | $-0.19\substack{+0.48\\-0.19}$  | -                             | -                |
| 41+   | $2^+_1$          | $1.64\substack{+0.05\\-0.05}$    | $0.30\substack{+0.03 \\ -0.02}$ | 70 <sup>+5</sup>   | $1.61\substack{+0.05 \\ -0.05}$ | $0.29\substack{+0.02\\-0.02}$ | $67^{+5}_{-5}$   |
| 22+   | 2 <sub>1</sub> + | $1.32\substack{+0.08\\-0.09}$    | $0.36\substack{+0.05 \\ -0.05}$ | $83^{+12}_{-12}$   | $1.34\substack{+0.08\\-0.09}$   | $0.36\substack{+0.05\\-0.05}$ | $81^{+12}_{-12}$ |

# <sup>140</sup>Sm – COULEX – 3<sup>rd</sup> (final) approach

Matrix elements and B(E2) values in  $^{140}$ Sm with correlated errors obtained assuming (2+  $_2$ ) state at 990keV.

| $I_i$              | $I_{f}$     | Without lifetime                 |                                 |                    | With lifetime                   |                               |                  |
|--------------------|-------------|----------------------------------|---------------------------------|--------------------|---------------------------------|-------------------------------|------------------|
|                    |             | M( <i>E</i> 2)                   | B( <i>E</i> 2)                  |                    | M( <i>E</i> 2)                  | B( <i>E</i> 2)                |                  |
|                    |             | eb                               | $e^2b^2$                        | W.U.               | eb                              | $e^2b^2$                      | W.U.             |
| 2+                 | $0_{1}^{+}$ | $1.12\substack{+0.03 \\ -0.02}$  | $0.25\substack{+0.01\\-0.01}$   | 58 <mark>+7</mark> | $1.03^{+0.04}_{-0.03}$          | $0.21\substack{+0.02\\-0.01}$ | $49^{+4}_{-3}$   |
| 2+                 | $2_{1}^{+}$ | $+0.06\substack{+0.54 \\ -0.20}$ | <b>_</b> .                      | -                  | $-0.19\substack{+0.48\\-0.19}$  | -                             | -                |
| 41+                | $2_{1}^{+}$ | $1.64\substack{+0.05\\-0.05}$    | $0.30\substack{+0.03 \\ -0.02}$ | $70^{+5}_{-5}$     | $1.61\substack{+0.05 \\ -0.05}$ | $0.29\substack{+0.02\\-0.02}$ | $67^{+5}_{-5}$   |
| 2 <mark>2</mark> + | $2_{1}^{+}$ | $1.32\substack{+0.08\\-0.09}$    | $0.36\substack{+0.05\\-0.05}$   | $83^{+12}_{-12}$   | $1.34\substack{+0.08\\-0.09}$   | $0.36\substack{+0.05\\-0.05}$ | $81^{+12}_{-12}$ |
|                    |             |                                  |                                 |                    |                                 |                               |                  |

### **Comparison with theory**



Theory from Gogny D1S calculations from M.Girod and J.-P.Delaroche, CEA Bruyeres-le-Chatel (priv. comm.)

# Summary

- Coulomb excitation <sup>140</sup>Sm + <sup>94</sup>Mo at CERN, ISOLDE
- Lifetime investigation at HIL, Warsaw
- Spin-state assignment from angular correlation at HIL, Warsaw
- Probably no shape coexistence
- The analysis of the Coulomb excitation data is presently being finalized
- <u>Future:</u> accepted proposal at High ISOLDE



### Isotope separation on-line and postacceleraation at ISOLDE



### Theory vs experiment

Calculations predict transition from prolate to oblate shape with increasing proton number along N=78



 $\Rightarrow$  indication for

shape coexistence ?

1. low-lying excited 0<sup>+</sup> state ?

2. y-vibrational band built on oblate shape ?



configuration mixing calculation GCM(GOA) 5-dimensional  $(q_{20}, q_{22}, \alpha, \beta, \gamma)$ Gogny D1S interaction

> M.Girod, J.-P.Delaroche CEA Bruyères-le-Châtel

### Shapes above the isomers





rotationally aligned 2qp bands built on  $\pi(h_{11/2})^2$  and  $\nu(h_{11/2})^{-2}$ 

indirect evidence for shape coexistence at higher spins