Coulomb excitation of ^{138,140,142,144}Xe - IS411 campaign Corinna Henrich

TECHNISCHE UNIVERSITÄT DARMSTADT

09.10.2014 | Institut für Kernphysik | AG Kröll | Corinna Henrich | 1

Introduction -Area of interest

09.10.2014 | Institut für Kernphysik | AG Kröll | Corinna Henrich | 2

Motivation -Evolution of the energy of the 2⁺₁-state

Figure : Energy of the first 2⁺-state

Motivation -Evolution of the energy of the 2⁺/₁-state

▶ Connection to B(E2; $0_{as}^+ \rightarrow 2_1^+$): Empirical Grodzins' rule (1962):

 $E_{2^+_1}[\text{keV}] \cdot B(E2; 0^+_{gs} \rightarrow 2^+_1)[e^2b^2] = 16.3 \cdot Z^2 \cdot A^{-1}$

Motivation -Empirical Grodzins' rule and B(E2)-values

► By S. Raman et al. (2001) and D. Habs et al. (2002) modified Grodzins' rule: $E_{2^+_1}[\text{keV}] \cdot B(E2; 0^+_{gs} \rightarrow 2^+_1)[e^2b^2] = 3.242 \cdot Z^2 \cdot A^{-\frac{2}{3}}(1.000 - 0.0608(N - \overline{N}))$

09.10.2014 | Institut für Kernphysik | AG Kröll | Corinna Henrich | 4

Motivation -Former experimental results

Data measured at HRIBF (Oak Ridge): D. C. Radford et al., Phys. Rev. Lett. 88, 222501 (2002) R. L. Varner et al., Eur. Phys. J. A 25, s01, 391 (2005) D.C. Radford et al., Eur. Phys. J. A 25, 383 (2005)

Experiment -Coulex setup

- Projectile:
 - Xenon beam with 2.8 MeV/u (85% of max energy for Safe Coulex)
 - Provided by REX-ISOLDE facility at CERN in 2005 and 2006
 - Nuclides ^{138,140,142,144}Xe

Experiment -Coulex setup

- Projectile:
 - Xenon beam with 2.8 MeV/u (85% of max energy for Safe Coulex)
 - Provided by REX-ISOLDE facility at CERN in 2005 and 2006
 - Nuclides ^{138,140,142,144}Xe

Target:

- ⁹⁶Mo target with thickness of 1.7 mg/mg/mg/mg
- Reasons for choice: sufficient information on nucleus, preparable as target, scattering kinematics

Experiment -Coulex setup

- Projectile:
 - Xenon beam with 2.8 MeV/u (85% of max energy for Safe Coulex)
 - Provided by REX-ISOLDE facility at CERN in 2005 and 2006
 - Nuclides ^{138,140,142,144}Xe

Target:

- ⁹⁶Mo target with thickness of 1.7 mg/mg/mg/mg
- Reasons for choice: sufficient information on nucleus, preparable as target, scattering kinematics
- Inverse kinematics
- In-flight emission of γ-rays ⇒ angles are of importance!

$$\sigma_{Coul}^{p} = \frac{1}{P} \cdot \frac{N_{\gamma}^{p}}{\epsilon_{\gamma}^{p}} \cdot \frac{\epsilon_{\gamma}^{t}}{N_{\gamma}^{t}} \cdot \sigma_{Coul}^{t}$$

Determine projectile Coulex cross section
 ^p
 _{Coul} relative to target
 ^t
 _{Coul}
 using CLX & DCY

$$\sigma^{p}_{Coul} = \frac{1}{P} \cdot \frac{N^{p}_{\gamma}}{\epsilon^{p}_{\gamma}} \cdot \frac{\epsilon^{t}_{\gamma}}{N^{t}_{\gamma}} \cdot \sigma^{t}_{Coul}$$

- σ^t_{Coul}: CLX & DCY need matrix elements of target ⁹⁶Mo: (M₀₂, M₂₂)¹
- Counts in efficiency corrected peak $\frac{N_{\gamma}}{\epsilon_{\gamma}}$
- Beam purity P
 - Cold plasma ion source used
 - ► Breeding time of REX-EBIS ⇒ beam purity

Determine projectile Coulex cross section
 ^p
 _{Coul} relative to target
 ^t
 _{Coul}
 using CLX & DCY

$$\sigma^{p}_{Coul} = \frac{1}{P} \cdot \frac{N^{p}_{\gamma}}{\epsilon^{p}_{\gamma}} \cdot \frac{\epsilon^{t}_{\gamma}}{N^{t}_{\gamma}} \cdot \sigma^{t}_{Coul}$$

- σ^t_{Coul}: CLX & DCY need matrix elements of target ⁹⁶Mo: (M₀₂, M₂₂)¹
- Counts in efficiency corrected peak $\frac{N_{\gamma}}{\epsilon_{\gamma}}$
- Beam purity P
 - Cold plasma ion source used
 - ► Breeding time of REX-EBIS ⇒ beam purity

► $\sigma_{Coul}^{p} = \text{CLX/DCY}(M_{02}, M_{22}, ..) \Rightarrow M_{02} \Rightarrow B(\text{E2}; 0_{gs}^{+} \rightarrow 2_{1}^{+})$

Analysis of ¹³⁸Xe -Kinematics and Doppler-corrected spectra

- High count rates (10⁵ part./s)
 - \Rightarrow Inner four rings covered
 - \Rightarrow Only small angular range on DSSSD available!

Analysis of ¹³⁸Xe -Lifetime measurements

- ► ⇒ Not enough information to determine B(E2)-value and quadrupole moment with reasonable confidence intervals
- ► ⇒ Additional information by direct lifetime measurements: $\tau(2_1^+) = (17.3 \pm 3.4) \text{ ps}^{-1}$

Analysis of ¹³⁸Xe -Lifetime measurements

- ► ⇒ Not enough information to determine B(E2)-value and quadrupole moment with reasonable confidence intervals
- $\blacktriangleright \Rightarrow$ Additional information by direct lifetime measurements: $\tau(2^{*}_{1})$ = (17.3 \pm 3.4) ps 1

Preliminary results for ¹³⁸Xe -1σ-contour plot

Preliminary results for ¹³⁸Xe -1σ-contour plot

 \Rightarrow B(E2)-value and quadrupole moment

• B(E2;
$$0_{gs}^+ \rightarrow 2_1^+$$
) = (0.31 ± 0.07) e²b²

• $eQ_s(2_1^+) = (0.27 + 1.02) - 0.83) eb$

Analysis of ¹⁴⁰Xe -Doppler-corrected spectra using full statistics

Analysis of ¹⁴⁰Xe -Approach

- Relevant matrix elements: M₀₂, M₂₂, M₂₄, and M₄₄
- Mean lifetime τ(2⁺₁)= (101.7 ± 3.2) ps¹ and τ(4⁺₁) = (22.8 ± 4.9) ps¹

Analysis of ¹⁴⁰Xe -Approach

- Relevant matrix elements: M₀₂, M₂₂, M₂₄, and M₄₄
- Mean lifetime τ(2⁺)= (101.7 ± 3.2) ps¹ and τ(4⁺) = (22.8 ± 4.9) ps¹

1: A. Lindroth et al. Phys. Rev. Lett. 82:4783-4786

Analysis of ¹⁴⁰Xe -Approach

- Relevant matrix elements: M₀₂, M₂₂, M_{24} , and M_{44}
- Mean lifetime and $au(4^+_1) = (22.8 \pm 4.9) \, \mathrm{ps^1}$
- τ (2⁺₁)= (101.7 ± 3.2) ps¹

1: A. Lindroth et al. Phys. Rev. Lett. 82:4783-4786

09.10.2014 | Institut für Kernphysik | AG Kröll | Corinna Henrich | 12

Preliminary results for ¹⁴⁰Xe -1σ-contour plot

 \Rightarrow B(E2)-values and quadrupole moments

- ▶ $B(E2; 0_{gs}^{+} \rightarrow 2_{1}^{+}) = (0.53 \pm 0.01) e^{2}b^{2}$
- $eQ_s(2_1^+) = (-0.71 \ ^{+0.39}_{-0.36}) eb$

▶ B(E2; $2_1^+ \rightarrow 4_1^+$) = (0.30 ±0.05) e^2b^2 ▶ $eQ_s(4_1^+)$ = (-2.56 $^{+0.88}_{-0.79}$) eb

09.10.2014 | Institut für Kernphysik | AG Kröll | Corinna Henrich | 13

Preliminary results for ¹⁴⁰Xe -1σ-contour plot

Analysis of ¹⁴⁴Xe -Doppler-corrected spectra using full statistics

Analysis ongoing. Challenging due to low statistics :(

Preliminary results -Comparison to theory

systematics: modified Grodzins' systematics NNDC: National Nuclear Data Center T. Behrens, PhD thesis ORPA: J. Terasaki et al., Phys. Rev. C 66 (2002) 054313 LSSM: D. Bianco et al., Phys. Rev. C 88 (2013) 024303 MCSM: N. Shimizu et al., J. Phys.: Conf. Ser. 49 (2006) 178

Summary and outlook -Preliminary results

	$\begin{array}{c} \text{Transition} \\ I_i \to I_f \end{array}$	B(E2) _↑ in e²b²	eQ _s (I _f) in eb	
¹³⁸ Xe	$0^{*}_{gs} \rightarrow 2^{+}_{1}$	0.31 ± 0.07	$0.27 \ ^{+1.02}_{-0.83}$	
¹⁴⁰ Xe	$0^{*}_{gs} \rightarrow 2^{+}_{1}$	$\textbf{0.53} \pm \textbf{0.01}$	$\textbf{-0.71} \begin{array}{c} \textbf{+0.39} \\ \textbf{-0.36} \end{array}$	
	$2_1^{\scriptscriptstyle +} \to 4_1^{\scriptscriptstyle +}$	$\textbf{0.30} \pm \textbf{0.05}$	$\textbf{-2.56} \begin{array}{c} \textbf{+0.88} \\ \textbf{-0.79} \end{array}$	
¹⁴² Xe	$0^{+}_{gs} \rightarrow 2^{+}_{1}$	$\textbf{0.67} \pm \textbf{0.02}$	$-1.02 \ \substack{+0.64 \\ -0.60}$	
	$2_1^{\scriptscriptstyle +} \to 4_1^{\scriptscriptstyle +}$	$0.41 {}^{+0.22}_{-0.18}$	-2.45 $^{+\infty}_{-1.88}$	

Summary and outlook -Preliminary results

¹⁴⁰ Xe

	Transition $I_i \rightarrow I_f$	B(E2)↑ in e²b²	eQ _s (I _f) in eb	9^{-} 2736 551 7^{-} 2185 753	
¹³⁸ Xe	$0^{*}_{gs} \rightarrow 2^{*}_{1}$	0.31 ± 0.07	0.27 +1.02 -0.83	413	8 ⁺ 1983
¹⁴⁰ Xe	$0^{*}_{gs} \rightarrow 2^{*}_{1}$	$\textbf{0.53} \pm \textbf{0.01}$	$-0.71 \ ^{+0.39}_{-0.36}$	5^{-} 1772 768 - 259	566
	$2_1^{\scriptscriptstyle +} \to 4_1^{\scriptscriptstyle +}$	$\textbf{0.30}\pm\textbf{0.05}$	$\textbf{-2.56} \begin{array}{c} \textbf{+0.88} \\ \textbf{-0.79} \end{array}$	3 1 1513	<u>6⁺ 1417</u>
¹⁴² Xe	$0^{*}_{gs} \rightarrow 2^{*}_{1}$	$\textbf{0.67} \pm \textbf{0.02}$	$-1.02 \ ^{+0.64}_{-0.60}$		582
	$2_1^{\scriptscriptstyle +} \to 4_1^{\scriptscriptstyle +}$	$0.41 {}^{+0.22}_{-0.18}$	-2.45 $^{+\infty}_{-1.88}$	1136	4 ⁺ 835
► HIF	-ISOLDE: Inf	\backslash	458 2 ⁺ 377		

- HIE-ISOLDE: Influence of multiple Coulex increases (additional matrix elements)

Thank you for your attention!

Supported by:

Bundesministerium für Bildung und Forschung

(506065)

199192

and the IS411-MINIBALL Collaboration

(06DA9036I, 05P12RDCIA)

09.10.2014 | Institut für Kernphysik | AG Kröll | Corinna Henrich | 17

Backup -Analysis of ¹⁴²Xe -Doppler-corrected spectra using full statistics

TECHNISCHE

UNIVERSITÄT DARMSTADT

09.10.2014 | Institut für Kernphysik | AG Kröll | Corinna Henrich | 21

Backup -Preliminary results for ¹⁴²Xe -1σ-contour plot

 \Rightarrow B(E2)-values and quadrupole moments

- B(E2; $0_{gs}^+ \rightarrow 2_1^+$) = (0.67 \pm 0.02) $e^2 b^2$
- $eQ_s(2_1^+) = (-1.02 + 0.64) = 0.60$

▶ B(E2; $2_1^+ \rightarrow 4_1^+$) = (0.41 $^{+0.22}_{-0.18}$) e^2b^2 ▶ $eQ_s(4_1^+)$ = (-2.45 $^{+\infty}_{-1.88}$) eb

TECHNISCHE

DARMSTADT

Used mean lifetime τ (2⁺₁) = (270 \pm 10) ps: S. Ilieva, preliminary value; EXILL-FATIMA campaign at ILL in 2013

09.10.2014 | Institut für Kernphysik | AG Kröll | Corinna Henrich | 23

Backup -Matrix elements

 B(E2)-values are dependent on off-diagonal matrix elements

$$B(E2; I_i \rightarrow I_f) = \frac{1}{2I_i + 1} |M_{if}|^2$$

• Connection of the mean lifetime τ to B(E2)-values

$$rac{1}{ au(I_f)} \propto E_{\gamma}^5 \cdot B(E2; I_i
ightarrow I_f)$$

 Quadrupole moments are dependent on diagonal matrix elements

$$M_{22} = \sqrt{\frac{7}{2\pi} \frac{5}{4}} eQ_s$$
$$M_{44} = \frac{1}{2} \sqrt{\frac{275}{7\pi}} eQ_s$$

Backup -Analysis of ¹³⁸Xe - Approach

► ⇒ (M₀₂, M₂₂)-pairs determined from experimental projectile cross section

Backup - Grodzins' rule

