THE UNIVERSITY of York

KU LEUVEN

Coulomb excitation of neutron deficient radon and polonium isotopes

Liam Gaffney¹, Nele Kesteloot^{1,2} On behalf of the IS465/IS479 collaboration

¹KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, B-3001, Belgium ²SCK CEN (Studiecentrum voor Kernenergie, Mol, B-2400, Belgium

Shape coexistence

- Different types of deformation
- Interplay between two opposin
 - Stabilizing effect of closed she^[™]
 - Residual proton-neutron intera

Heyde and Wood, Review of Modern Physics (2011)

T.E. Cocolios et al, Phys. Rev. Lett. (2011)

- Evidence across the light-lead region
- Lack of experimental information
 - Nature of deformation
 - Degree of mixing

Andreyev et al Nature 405:430 (2000)

KU LEUVEN

A complementary experimental picture: Above and below Z=82

- Energy-level systematics show intruder structure, usually parabolic.
- Charge radii reveal the onset of deformation.
- B(E2)'s detail couplings of states
 within structures.
- Quadrupole moments and interband matrix elements complete picture of shape.

3

Coulomb excitation : Particle-y

Z = 86: 202,204 Rn: γ -ray spectra

DC for **Rn projectile** DC for **Ag recoil**

²⁰²Rn on ¹²⁰Sn

KU LEUVEN

Gosia2 results: Radon

Z = 84: ¹⁹⁶⁻²⁰²Po: γ-ray spectra

Z = 84: ¹⁹⁶⁻²⁰²Po: γ-ray spectra

- Population of 2⁺₁ state in all isotopes
- Multi-step coulex observed in ^{196,198}Po

 6^{+}

1390

-<u>9</u>1

1388

859

4+

 2^{+}

Gosia results : Polonium

- If only 2⁺₁ state populated
 - Extract $<0^{+}_{1}||E2||2^{+}_{1}>$ and $<2^{+}_{1}||E2||2^{+}_{1}>$
 - \circ χ^2 surface to look for best solution
 - Example: ²⁰⁰Po on ¹⁰⁴Pd

KU LEUV

Comparison with Beyond Mean Field

Spectroscopic Quadrupole Moment [b]

KU L

J.M. Yao, M. Bender, P.-H. Heenen PRC **87**, 034322 (2013)

11

Comparison with Beyond Mean Field:¹⁹⁸Po

Radon BMF: 2⁺ Energies

J.M. Yao, M. Bender, P.-H. Heenen PRC **87**, 034322 (2013)

Comparison with Beyond Mean Field:¹⁹⁸Po

14

- Poor energy-level reproduction
- Magnitude and relative B(E2) values are pretty good

Heenen PRC 87, 034322 (2013)

Summary

Z

88

84

78

76

74

- B(E2; $2^+_1 \rightarrow 0^+_1$) determined in radon isotopes.
 - ²⁰²Rn = 29(8) W.u. ; ²⁰⁴Rn = 35(14) W.u.
- Larger data set in polonium: ¹⁹⁶Po(6 ME's), ¹⁹⁶Po(7 ME's), ^{200,202}Po(2 ME's).
 - comparison to BMF calculations; IBM underway (J. E. García Ramos)
 - Sensitive to Q_s in ²⁰⁰Po, but not so much in other isotopes.
- Issue of relative signs of matrix elements and lack of data.
 - Leads to two indistinguishable solutions in 198Po = two Qs
 - X-ray problem (presented last year by Nele Kesteloot)
 - Looking forward to SPEDE to directly measure conversion electron

10

0

Thank you!

Thank you for your attention!

KU LEUVEN

- N. Bree
- H. De Witte
- J. Diriken
- L.P. Gaffnev
- M. Huyse
- N. Kesteloot
- O. Ivanov
- R. Orlandi
- N. Patronis
- I. Stefanescu
- P. Van Duppen
- K. Wrzosek-Lipska

- **B.** Bastin E. Clément
- N. Lecesne

UNIVERSITY OF JYVÄSKYLÄ T. Grahn R. Julin J. Konki J. Pakarinen P.J. Peura P. Rahkila

- J. Cederkäll
- V. Fedosseev
- L.M. Fraile B. Marsh
- E. Piselli
- E. Rapisarda
- M. Seliverstov
- T. Stora
- D. Voulot
- J. Van de Walle
- F. Wenander

- Ch. Fransen K. Geibel
- H. Hess
- P. Reiter
- **B. Siebeck**
- N. Warr
- A. Wiens

MANCHESTER 1824

The University of Manchester

- T.E. Cocolios
- A. Deacon
- C. Fitzpatrick S.J. Freeman
- A.P. Robinson

R. Krücken

THE UNIVERSITY of York

A. Andreyev J. Butterworth **D.G. Jenkins**

P. Marlev

M. Guttormsen A.C. Larsen S. Siem G.M. Tveten

A. Petts P.A. Butler R.-D. Herzberg R.D. Page

P.-H. Heenen, Université Libre de Bruxelles K. Heyde, Ghent University J.L. Wood, Georgia Institute of Technology T. Kröll, Technische Universität Darmstadt M. Zielinska, CEA Saclay M. Bender, Université Bordeaux M. Carpenter, Argonne National Laboratory A. Ekström, University of Lund J.E. Garcia-Ramos, Universidad de Huelva

KU LEUVEN

Analysis of ¹⁹⁶⁻²⁰²Po: Xrays

Atomic production of Xrays

• K vacancy creation in collision of beam and target

$$\sigma = Z_t^2 \frac{1}{(I_K^{0.95})^2} \exp\left[\sum_{i=0}^5 b_i \left(\ln\left(\frac{E_p}{(I_K^{0.95})^2}\right)\right)\right]$$

J.D. Garcia et al, RMP 45 No 2 (1973) 111

- Scale experiment to theory
 - o ^{188,202}Hg, ^{202,204}Rn, ^{202,206}Po
 - Take conversion into account
 - No E0 expected $(0^+_1 \rightarrow 0^+_2 \text{ or } 2^+_2 \rightarrow 2^+_1)$

KU

²⁰²Hg contamination

- In 2009, cooled transfer line failed allowing Hg out of VADIS.
- Data on Sn target can still be used, normalised to $Rn(2^+ \rightarrow 0^+)$.
- Data on Ag cannot be reliably normalised yet

KU LEUVEN

Radon BMF: 2⁺ Energies

20

Radon BMF: B(E2)

Radon BMF: Q_s(2⁺)

