COLLIDER CONSTRAINTS ON DARK MATTER

Nicole Bell Centre of Excellence for Particle Physics at the Terascale The University of Melbourne **Detecting Dark Matter**

production (collider searches)

annihilation (indirect detection)

COEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

"WIMP Miracle"

★ The thermal relic picture sets the "natural scale" for the dark matter annihilation cross section: $\Omega_{DM} \sim 0.2 \text{ implies } \langle \sigma v \rangle \sim 2 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

Suggests electroweak-scale parameters since:

$$\langle \sigma v \rangle \sim \frac{\alpha^2}{\left(100 \,\mathrm{GeV}\right)^2} \sim 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}$$

→ 1) A compelling argument, given we have other reason to expect new physics at the GeV-TeV scale.

 \rightarrow 2) Realistic prospects of detection:

Dark Matter, Stawen

- annihilation signals (indirect detection)
- nuclear recoils (direct detection)
- monojets+missing ET (colliders)

Outline

- o Introduction
- Describing dark matter interactions, EFTs
- o Mono-X
- Colliders vs Direct Detection
- Higgs Portal
- o Beyond EFTs
- Some non-standard WIMP models

Effective Field Theories

- model-independent description

Disadvantages:

co - breaks down if Q² is large or mediators light

Effective operators for Dirac DM

Model-independent description of fermionic DM interacting with SM fermions:

$$L_{\rm eff} = \frac{1}{\Lambda_{\rm eff}^2} \left(\bar{\chi} \, \Gamma_{\chi} \chi \right) (\bar{f} \, \Gamma_f f)$$
$$\Gamma_{\chi,f} \in \{1, \gamma^5, \gamma^\mu, \gamma^\mu \gamma^5, \sigma^{\mu\nu}\}$$

Name	Operator	Coefficient	DD
D1	$[ar{\chi}\chi][ar{f}f]$	$m_f \Lambda^{-3}$	SI
D2	$[ar{\chi}\gamma^5\chi][ar{f}f]$	$im_f\Lambda^{-3}$	
D3	$[ar{\chi}\chi][ar{f}\gamma^5 f]$	$im_f\Lambda^{-3}$	
D4	$[ar{\chi}\gamma^5\chi][ar{f}\gamma^5f]$	$m_f \Lambda^{-3}$	
D5	$[ar{\chi}\gamma^{\mu}\chi][ar{f}\gamma_{\mu}f]$	Λ^{-2}	SI
D6	$[ar{\chi}\gamma^{\mu}\gamma^{5}\chi][ar{f}\gamma_{\mu}f]$	Λ^{-2}	
D7	$[ar{\chi}\gamma^{\mu}\chi][ar{f}\gamma_{\mu}\gamma^{5}f]$	Λ^{-2}	
D8	$[ar{\chi}\gamma^{\mu}\gamma^{5}\chi][ar{f}\gamma_{\mu}\gamma^{5}f]$	Λ^{-2}	SD
D9	$[ar{\chi}\sigma^{\mu u}\chi][ar{f}\sigma_{\mu u}f]$	Λ^{-2}	SD
D10	$[ar{\chi}\sigma^{\mu u}\gamma^5\chi][ar{f}\sigma_{\mu u}f]$	$i\Lambda^{-2}$	
D11	$[\bar{\chi}\chi][G_{\mu\nu}G^{\mu\nu}]$	$\alpha_S \Lambda^{-3}$	SI
D12	$[ar{\chi}\gamma^5\chi][G_{\mu u}G^{\mu u}]$	$i lpha_S \Lambda^{-3}$	_
D13	$[ar{\chi}\chi][G_{\mu u} ilde{G}^{\mu u}]$	$i lpha_S \Lambda^{-3}$	—
D14	$[\bar{\chi}\gamma^5\chi][G_{\mu u} ilde{G}^{\mu u}]$	$\alpha_S \Lambda^{-3}$	_

Effective operators for Scalar DM

Complex scalar DM

Real scalar DM

Operator	Coefficient	DD
$[\chi^*\chi][\bar{f}f]$	$m_f \Lambda^{-2}$	SI
$[\chi^*\chi][ar{f}\gamma^5 f]$	$im_f\Lambda^{-2}$	—
$[\chi^*\partial_\mu\chi][ar f\gamma^\mu f]$	Λ^{-2}	SI
$[\chi^*\partial_\mu\chi][ar f\gamma^\mu\gamma^5 f]$	Λ^{-2}	_
$[\chi^*\chi][G_{\mu u}G^{\mu u}]$	$lpha_S \Lambda^{-2}$	SI
$[\chi^*\chi][G_{\mu u} ilde{G}^{\mu u}]$	$i\alpha_S\Lambda^{-2}$	_
$[\chi\chi][ar{f}f]$	$m_f \Lambda^{-2}$	SI
$[\chi\chi][ar{f}\gamma^5 f]$	$im_f\Lambda^{-2}$	_
$[\chi\chi][G_{\mu u}G^{\mu u}]$	$lpha_S \Lambda^{-2}$	SI
$[\chi\chi][G_{\mu\nu}\tilde{G}^{\mu\nu}]$	$i \alpha_S \Lambda^{-2}$	—
	$\begin{array}{c} \text{Operator} \\ [\chi^*\chi][\bar{f}f] \\ [\chi^*\chi][\bar{f}\gamma^5 f] \\ [\chi^*\partial_\mu\chi][\bar{f}\gamma^\mu\gamma^5 f] \\ [\chi^*\partial_\mu\chi][\bar{f}\gamma^\mu\gamma^5 f] \\ [\chi^*\chi][G_{\mu\nu}G^{\mu\nu}] \\ [\chi^*\chi][G_{\mu\nu}\tilde{G}^{\mu\nu}] \\ [\chi\chi][\bar{f}f] \\ [\chi\chi][\bar{f}\gamma^5 f] \\ [\chi\chi][G_{\mu\nu}\tilde{G}^{\mu\nu}] \\ [\chi\chi][G_{\mu\nu}\tilde{G}^{\mu\nu}] \end{array}$	$\begin{array}{ c c c c } \hline \text{Operator} & \text{Coefficient} \\ \hline & [\chi^*\chi][\bar{f}f] & m_f\Lambda^{-2} \\ \hline & [\chi^*\chi][\bar{f}\gamma^5f] & im_f\Lambda^{-2} \\ \hline & [\chi^*\partial_\mu\chi][\bar{f}\gamma^\mu f] & \Lambda^{-2} \\ \hline & [\chi^*\partial_\mu\chi][\bar{f}\gamma^\mu\gamma^5f] & \Lambda^{-2} \\ \hline & [\chi^*\chi][G_{\mu\nu}G^{\mu\nu}] & \alpha_S\Lambda^{-2} \\ \hline & [\chi^*\chi][G_{\mu\nu}\tilde{G}^{\mu\nu}] & i\alpha_S\Lambda^{-2} \\ \hline & [\chi\chi][\bar{f}f] & m_f\Lambda^{-2} \\ \hline & [\chi\chi][\bar{f}\gamma^5f] & im_f\Lambda^{-2} \\ \hline & [\chi\chi][G_{\mu\nu}\tilde{G}^{\mu\nu}] & \alpha_S\Lambda^{-2} \\ \hline & [\chi\chi][G_{\mu\nu}\tilde{G}^{\mu\nu}] & i\alpha_S\Lambda^{-2} \end{array}$

Can also write down EFTs describing DM interactions with SM gauge bosons or the Higgs boson.

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Strong bounds on EFT operators!

Bounds on some EFT operators are becoming quite constraining!

✤ Direct detection, collider, and indirect detection
→ lower limits on Λ_{eff} (no signals)

Relic density

 \rightarrow upper limit on Λ_{eff} (to prevent over-closure)

For many operators, these limits are approaching!

If the EFT description is relevant for DM, we may see a signal soon!

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Mono-X signal at colliders

□ The dominant DM production process is invisible (DM stable, weakly interacting) : $\bar{q}q \rightarrow \chi\chi$

Need visible particles in the final state, to recoil against missing transverse energy

 $\bar{q}q \rightarrow \chi \chi + \text{ SM particle}$

Mono-X process in which DM is visible as a high p_T state + missing E_T

→ Mono-jet, mono-photon, mono-Z, mono-W, mono-Higgs

Mono-X processes

Mono-Z initial state radiation

Mono-Z from DM interacting directly with Z bosons

L. Carpenter et al

Mono-Higgs

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

LHC limits on $\Lambda_{ m eff}$

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Scalar operator

$$\mathcal{O}_s^{\psi} = \frac{m_q}{\Lambda_s^3} \,\bar{q}q \,\bar{\psi}\psi$$

Consider a scalar operator:

Coupling ∝ mass motivated by minimal flavour violation Tree-level diagrams do not give a large monojet signal, but top quark loops do.

lll

Haisch et al, arXiv:1208.4605

ole Bell, University of Melbourne

LHC vs direct detection

Spin-independent

Spin-dependent

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Higgs Portal DM

Take the EFT approach and consider interactions of the form:

where O_{DM} = dark matter operator O_{SM} = standard model operator with O_{DM} & O_{SM} both singlets under the SM gauge group The lowest dimension SM operator is the Higgs bilinear: $H^{\dagger} H$ \rightarrow Form "Higgs portal" operators of the form: $\frac{1}{\Lambda^n} O_{DM} (H^{\dagger} H)$

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Types of Higgs Portals

Scalar Higgs portal: $\lambda_s S^2(H^{\dagger} H)$

Vector Higgs portal: $\lambda_V V^{\mu} V_{\mu} (H^{\dagger} H)$

Note: these are renormalizable, with dimensionless coupling λ

Fermionic Higgs portal: $\frac{1}{\Lambda}(\bar{\chi}\chi)(H^{\dagger}H)$

Note: Non-renormalizable (higher dimension) operator.

COEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Nicole Bell, University of Melbourne

Higgs Portal & Higgs invisible width

If
$$m_{DM} < \frac{m_{\rm higgs}}{2}$$

 \rightarrow Higgs width increased by decay to dark matter, $H \rightarrow \bar{\chi} \chi$

 \rightarrow Constraints from LHC determinations of Higgs invisible width

Br(inv) < 0.75

ATLAS, arXiv: 1402.3244

Note that because the SM Higgs width is so small (about 4 MeV), even modest limits on B(inv) place strong limits on Higgs portal models.

ATLAS, arXiv: 1402.3244

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

EFTs are useful, but have limitations

D EFT bounds can over-estimate constraints on a given model e.g. Models with light mediators (<u>except</u> where $M_{mediator} > 2M_{DM}$, where an s-channel resonance is possible)

□ EFT bounds can under-estimate constraints on a given model e.g. If DM-SM interaction mediated by a new colored particle the EFT monojet bounds are often too conservative.

 Importantly: in many UV complete theories, there exists other dark sector particles at energy scales accessible to the LHC. Particles with SM quantum numbers, or a Z' gauge boson, ... etc.

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Validity of EFT description

$$\Lambda = \frac{M_{med}}{\sqrt{g_q g_\chi}} > \frac{m_{dm}}{4\pi}$$

$$R_{\Lambda}^{\rm tot} \equiv \frac{\sigma_{\rm eff}|_{Q_{\rm tr} < \Lambda}}{\sigma_{\rm eff}}$$

LHC searches for DM are operating in regions where the EFT description breaks down.

G.Busoni et al, 1307.2253

Beyond an EFT → Simplified Models

A given EFT maps to multiple simplified models

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Nicole Bell, University of Melbourne

t-channel mediator

The mediator:

- If χ stabilized by a symmetry, the mediator also carries this symmetry.
- Carries SM quantum numbers
 → can be pair produced at colliders
- Is heavier than the DM
 (so the DM does not decay to the mediator)

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Beyond an EFT:

t-channel scalar mediator

H.An et al, 1308.0592

See also: Chang et al. , 1307.8120 Bai & Berger, 1308.0612 DiFranzo et al., 1308.2679

s-channel mediator

The mediator:

- Directly couples to the SM
 → can produce mediator at colliders
- Can be lighter or heavier than the DM
- Mass and width are important

Beyond an EFT: s-channel vector mediator

- Mono-jets + missing ET
- Dijet resonance (where mediator can be produced on shell)
- $\bar{q}q\bar{q}q$ contact interactions (at very high mediator mass)

Dreiner et al 1303.33483

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Dijets vs monojets

Alves et al 1312.5281

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Models with gluon couplings

 Mono-jets place strong limits
 No tree-level UV completion is possible

D11	$[\bar{\chi}\chi][G_{\mu u}G^{\mu u}]$	$\alpha_S \Lambda^{-3}$	\mathbf{SI}
D12	$[\bar{\chi}\gamma^5\chi][G_{\mu u}G^{\mu u}]$	$ilpha_S\Lambda^{-3}$	
D13	$[ar{\chi}\chi][G_{\mu u} ilde{G}^{\mu u}]$	$ilpha_S\Lambda^{-3}$	_
D14	$[ar{\chi}\gamma^5\chi][G_{\mu u} ilde{G}^{\mu u}]$	$\alpha_S \Lambda^{-3}$	_

Abdallah et al 1409.2893

Some non-standard WIMPs

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Leptophilic WIMP?

- Suppose DM couples only to leptons (at tree level)
- Standard direct detection & LHC mono-X bounds don't apply.
- Even so, this scenario is strongly constrained

Direct detection loop-suppressed, yet still yields strong limits

Collider production via Drell-Yan process

Bell et al 1407.4566. See also: Kopp 0907.3159, and Altmannshofer 1406.1269

Nicole Bell, University of Melbourne

Leptophilic WIMP

Co-Annihilation

We often neglect all dark sector particles other than a single DM candidate. May not be valid.

Consider models in which there are 2 (or more) dark sector particles of similar mass, { χ_1 , χ_2 }, with m₁ \approx m_{2.}

- Relic density controlled by co-annihilation of χ_1 and χ_2
- χ_2 decays to χ_1 with lifetime << age of universe

Generalize the EFT description:

$$\frac{1}{\Lambda_{11}^2} (\overline{\chi_1} \Gamma_1 \chi_1) (\overline{f} \Gamma_2 f) ,$$

$$\frac{1}{\Lambda_{12}^2} (\overline{\chi_1} \Gamma_1 \chi_2) (\overline{f} \Gamma_2 f) + h.c. ,$$

$$\frac{1}{\Lambda_{22}^2} (\overline{\chi_2} \Gamma_1 \chi_2) (\overline{f} \Gamma_2 f) ,$$

If $\Lambda_{11} >> \Lambda_{12} \Lambda_{22} \rightarrow$ Self annihilation of χ_1 is suppressed

CoEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Nicole Bell, University of Melbourne

Co-annihilation

Relic density

- Co-annihilation of χ_1 and χ_2 controls the relic density

- Indirect detection
- <u>Suppressed</u> (because no χ_2 in universe today)
- Direct detection $\chi_1 + N \rightarrow \chi_2 + N$ cannot happen unless mass gap is tiny

> Colliders New signal: $pp \rightarrow \chi_1 \chi_2 + jet$ followed by χ_2 decay

Bell, Cai & Medina, 2014

Collider signals of co-annihilation

Bell, Cai & Medina, 2014

 $pp \rightarrow \chi_1 \chi_2 + \text{jet} \rightarrow \chi_1 \chi_1 + \text{jet} + SM$

Where the χ_2 decay process is: $\chi_2 \rightarrow \chi_1 + l^+ l^$ or $\chi_2 \rightarrow \chi_1 + \overline{q}q$

Could be observed with forthcoming LHC data!

Monojet signals also possible (from decay of χ_2 to neutrinos, or to particles too soft to be detected).

COEPP/CAASTRO Workshop on Dark Matter, Stawell, 29-30 Sep 2014

Concluding Thoughts

If we see a missing E_T signal at the LHC, that can be attributed to a new weakly interacting particle, we won't know if it's really the dark matter without other information.

Is it stable?

→DM must be stable on a timescale of order 10 Gyr.
 Colliders will tell us about stability on only nanosecond timescales (long enough to escape the detector).

Does it contribute all the relic density?

 \rightarrow Need to measure couplings to all SM particles.

◆ Consistent with direct and/or indirect detection?
 → These techniques provide important complimentary information