COLLIDER CONSTRAINTS ON DARK MATTER

Nicole Bell Centre of Excellence for Particle Physics at the Terascale The University of Melbourne Detecting Dark Matter

roduction (collider searches) production (collider searches)

annihilation (indirect detection)

"WIMP Miracle"

 \triangle The thermal relic picture sets the "natural scale" for the dark matter annihilation cross section: $\Omega_{DM} \sim 0.2$ implies $\langle \sigma v \rangle \sim 2 \times 10^{-26}$ cm³ s⁻¹

❖ Suggests electroweak-scale parameters since:

$$
\langle \sigma \nu \rangle \sim \frac{\alpha^2}{(100 \text{ GeV})^2} \sim 10^{-26} \text{ cm}^3 \text{s}^{-1}
$$

 \rightarrow 1) A compelling argument, given we have other reason to expect new physics at the GeV-TeV scale.

 \rightarrow 2) Realistic prospects of detection:

- annihilation signals (indirect detection)
- nuclear recoils (direct detection)
- monojets+missing ET (colliders)

Outline

- o Introduction
- o Describing dark matter interactions, EFTs
- o Mono-X
- o Colliders vs Direct Detection
- o Higgs Portal
- o Beyond EFTs
- o Some non-standard WIMP models

Effective Field Theories

- model-independent description

Disadvantages:

c_o - breaks down if Q² is large or mediators light discussions of Melbourne 6

Effective operators for Dirac DM

Model-independent description of fermionic DM interacting with SM fermions:

$$
L_{\text{eff}} = \frac{1}{\Lambda_{\text{eff}}^2} \left(\bar{\chi} \, \Gamma_{\chi} \chi \right) (\bar{f} \, \Gamma_f f)
$$

$$
\Gamma_{\chi, f} \in \{1, \gamma^5, \gamma^{\mu}, \gamma^{\mu} \gamma^5, \sigma^{\mu \nu} \}
$$

Effective operators for Scalar DM

Complex scalar DM

Real scalar DM

Can also write down EFTs describing DM interactions with SM gauge bosons or the Higgs boson.

Strong bounds on EFT operators!

Bounds on some EFT operators are becoming quite constraining!

 \dots Direct detection, collider, and indirect detection \rightarrow lower limits on Λ_{eff} (no signals)

❖ Relic density

 \rightarrow upper limit on Λ _{eff} (to prevent over-closure)

For many operators, these limits are approaching!

If the EFT description is relevant for DM, we may see a signal soon!

Mono-X signal at colliders

 \Box The dominant DM production process is invisible (DM stable, weakly interacting) : $\overline{q}q \rightarrow \chi \chi$

 \Box Need visible particles in the final state, to recoil against missing transverse energy

 $\overline{q}q \rightarrow \chi \chi + SM$ particle

Mono-X process in which DM is visible as a high p_T state + missing E_T

 \rightarrow Mono-jet, mono-photon, mono-Z, mono-W, mono-Higgs

Mono-X processes

Mono-Z initial state radiation

Mono-Z from DM interacting directly with Z bosons

L. Carpenter et al

Mono-Higgs

LHC limits on Λ_{eff}

Scalar operator

$$
\mathcal{O}^{\psi}_{s} = \frac{m_q}{\Lambda_s^3}\,\bar q q\,\bar\psi\psi
$$

Consider a scalar operator:

Coupling α mass motivated by minimal flavour violation Tree-level diagrams do not give a large monojet signal, but top quark loops do.

eeee

 $\frac{1}{2}g$

Haisch et al, arXiv:1208.4605

cole Bell, University of Melbourne 2014 13

LHC vs direct detection

Spin-independent Spin-dependent

Higgs Portal DM

Take the EFT approach and consider interactions of the form:

where O_{DM} = dark matter operator $\overline{O_{SM}}$ = standard model operator with O_{DM} & O_{SM} both singlets under the SM gauge group The lowest dimension SM operator is the Higgs bilinear: H^{\dagger}/H \rightarrow Form "Higgs portal" operators of the form: $\frac{1}{\Lambda^n}O_{DM}(H^{\dagger}H)$

Types of Higgs Portals

Scalar Higgs portal: $\lambda_s S^2(H^{\dagger} H)$

Vector Higgs portal: $\lambda_V V^\mu V_\mu$ $(H^\dagger H)$

Note: these are renormalizable, with dimensionless coupling λ

Fermionic Higgs portal: $\frac{1}{\Lambda}(\bar{\chi}\chi)(H^{\dagger}H)$

Note: Non-renormalizable (higher dimension) operator.

Higgs Portal & Higgs invisible width

$$
If \ m_{DM} < \frac{m_{\text{higgs}}}{2}
$$

 \rightarrow Higgs width increased by decay to dark matter, $H \rightarrow \overline{\chi}\chi$

 \rightarrow Constraints from LHC determinations of Higgs invisible width

 $Br(inv) < 0.75$

ATLAS, arXiv: 1402.3244

Note that because the SM Higgs width is so small (about 4 MeV), even modest limits on B(inv) place strong limits on Higgs portal models.

ATLAS, arXiv: 1402.3244

EFTs are useful, but have limitations

- \Box EFT bounds can over-estimate constraints on a given model e.g. Models with light mediators ($\frac{except}{where}$ where $M_{\frac{mediator}{} > 2M_{DM}}$, where an s-channel resonance is possible)
- \Box EFT bounds can under-estimate constraints on a given model e.g. If DM-SM interaction mediated by a new colored particle the EFT monojet bounds are often too conservative.
- \Box Importantly: in many UV complete theories, there exists other dark sector particles at energy scales accessible to the LHC. Particles with SM quantum numbers, or a Z' gauge boson, … etc.

Validity of EFT description

$$
\Lambda = \frac{M_{med}}{\sqrt{g_q g_\chi}} > \frac{m_{dm}}{4\pi}
$$

$$
R_{\Lambda}^{\rm tot} \equiv \frac{\sigma_{\rm eff}|_{Q_{\rm tr}<\Lambda}}{\sigma_{\rm eff}}
$$

LHC searches for DM are operating in regions where the EFT description breaks down.

G.Busoni et al, 1307.2253

$Beyond$ an EFT \rightarrow Simplified Models

A given EFT maps to multiple simplified models

t-channel mediator

The mediator:

- If χ stabilized by a symmetry, the mediator also carries this symmetry.
- **Carries SM quantum numbers** \rightarrow can be pair produced at colliders
- **If** Is heavier than the DM (so the DM does not decay to the mediator)

Beyond an EFT:

t-channel scalar mediator

H.An et al, 1308.0592

See also: Chang et al. , 1307.8120 Bai & Berger, 1308.0612 DiFranzo et al., 1308.2679

s-channel mediator

The mediator:

- **-** Directly couples to the SM \rightarrow can produce mediator at colliders
- **Can be lighter or heavier than the DM**
- **Nass and width are important**

Beyond an EFT: s-channel vector mediator

- Mono-jets + missing ET
- Dijet resonance (where mediator can be produced on shell)
- $\bar{q}q\bar{q}q$ contact interactions (at very high mediator mass)

Dreiner et al 1303.33483

Dijets vs monojets

Alves et al 1312.5281

Models with gluon couplings

Mono-jets place strong limits ■No tree-level UV completion is possible

Abdallah et al 1409.2893

Some non-standard WIMPs

Leptophilic WIMP?

- Suppose DM couples only to leptons (at tree level)
- Standard direct detection & LHC mono-X bounds don't apply.
- Even so, this scenario is strongly constrained

Direct detection loop-suppressed, yet still yields strong limits

Collider production via Drell-Yan process

Bell et al 1407.4566. See also: Kopp 0907.3159, and Altmannshofer 1406.1269

Leptophilic WIMP

Co-Annihilation

We often neglect all dark sector particles other than a single DM candidate. May not be valid.

Consider models in which there are 2 (or more) dark sector particles of similar mass, $\{\chi_1, \chi_2\}$, with $m_1 \approx m_2$.

- Relic density controlled by co-annihilation of χ_1 and χ_2
- $-\chi_2$ decays to χ_1 with lifetime << age of universe

Generalize the EFT description:

$$
\frac{1}{\Lambda_{11}^2} (\overline{\chi_1} \Gamma_1 \chi_1)(\overline{f} \Gamma_2 f) ,
$$

$$
\frac{1}{\Lambda_{12}^2} (\overline{\chi_1} \Gamma_1 \chi_2)(\overline{f} \Gamma_2 f) + h.c. ,
$$

$$
\frac{1}{\Lambda_{22}^2} (\overline{\chi_2} \Gamma_1 \chi_2)(\overline{f} \Gamma_2 f) ,
$$

If $\Lambda_{11} >> \Lambda_{12} \Lambda_{22}$ Self annihilation of χ_1 is suppressed

Co-annihilation

 \triangleright Relic density

- Co-annihilation of χ_1 and χ_2 controls the relic density

 \triangleright Indirect detection

- Suppressed (because no x_2 in universe today)

 \triangleright Direct detection $\chi_1 + N \rightarrow \chi_2 + N$ cannot happen unless mass gap is tiny

 \triangleright Colliders New signal: $pp \rightarrow \chi_1 \chi_2$ + jet followed by χ_2 decay

Bell, Cai & Medina, 2014

Collider signals of co-annihilation

Bell, Cai & Medina, 2014

 l/q \bar{q} $\overline{\Lambda^2_{12,L/B}}$ χ_2 χ_1 $\bar{\chi}_1$

 $pp \rightarrow \chi_1 \chi_2$ + jet $\rightarrow \chi_1 \chi_1$ + jet + SM

Where the χ_2 decay process is: $\chi_2 \rightarrow \chi_1 + l^+l^$ or $\chi_2 \rightarrow \chi_1 + \bar{q}q$

Could be observed with forthcoming LHC data!

Monojet signals also possible (from decay of χ_2 to neutrinos, or to particles too soft to be detected).

Concluding Thoughts

If we see a missing E_T signal at the LHC, that can be attributed to a new weakly interacting particle, we won't know if it's really the dark matter without other information.

\cdot Is it stable?

 \rightarrow DM must be stable on a timescale of order 10 Gyr. Colliders will tell us about stability on only nanosecond timescales (long enough to escape the detector).

\dots Does it contribute all the relic density? \rightarrow Need to measure couplings to all SM particles.

 Consistent with direct and/or indirect detection? \rightarrow These techniques provide important complimentary information