

#### Laboratori Naztionali del Gran Sasso



CoEPP-CAASTRO Workshop 2014

2

# INTRODUCTION

### The birth



4



CoEPP-CAASTRO Workshop 2014

6) ground stability.

Stefano Ragazzi – LNGS & UNIMIB

#### **Underground Science Laboratories**



### **Muon Flux versus depth**





### **The LNGS Laboratory**

- Muon flux: 3.0 10<sup>-4</sup> m<sup>-2</sup>s<sup>-1</sup>
- Neutron flux:

2.92 10<sup>-6</sup> cm<sup>-2</sup>s<sup>-1</sup> (0-1 keV) 0.86 10<sup>-6</sup> cm<sup>-2</sup>s<sup>-1</sup> (> 1 keV)

- Rn in air: 20-80 Bq m<sup>-3</sup>
- Surface: 17 800 m<sup>2</sup>
- Volume: 180 000 m<sup>3</sup>
- Ventilation: 1 vol / 3 hours



7

### A busy laboratory



### **LNGS: international laboratory**



### LNGS

#### Surface Lab:

- conference rooms
- offices
- canteen
- stores
- mech. workshop
- electronics lab
- chemistry lab
- mounting halls
- ~ 100 staff
- Annual operating costs: 13 M€ including personnel (~ 1/20<sup>th</sup> of INFN annual budget)



### Main research topics at LNGS

- High energy neutrinos
- Cosmogenic and solar neutrinos
- Neutrino properties
- Nuclear astrophysics
- Dark matter searches

## **DARK MATTER SEARCHES**

### **Dark Matter @ LNGS**

- DAMA/LIBRA
- XENON family
- CRESST
- DarkSide
  - See Davide D'Angelo's talk
- future Nal
  - See Davide D'Angelo's talk

• Ultrapure Na(TI)

#### Residual contamination

<sup>232</sup>Th, <sup>238</sup>U and <sup>40</sup>K at level of 10<sup>-12</sup> g/g



accurate linearity and energy resolution measurements and stability checks



no modulation of energy scale, energy resolution, efficiency

#### • 1 ton x year experiment

|                   | Period                        | Mass (kg) | Exposure (kg×day)                                 | $(lpha - eta^2)$ |
|-------------------|-------------------------------|-----------|---------------------------------------------------|------------------|
| DAMA/LIBRA-1      | Sept. 9, 2003 - July 21, 2004 | 232.8     | 51405                                             | 0.562            |
| DAMA/LIBRA-2      | July 21, 2004 - Oct. 28, 2005 | 232.8     | 52597                                             | 0.467            |
| DAMA/LIBRA-3      | Oct. 28, 2005 - July 18, 2006 | 232.8     | 39445                                             | 0.591            |
| DAMA/LIBRA-4      | July 19, 2006 - July 17, 2007 | 232.8     | 49377                                             | 0.541            |
| DAMA/LIBRA-5      | July 17, 2007 - Aug. 29, 2008 | 232.8     | 66105                                             | 0.468            |
| DAMA/LIBRA-6      | Nov. 12, 2008 - Sept. 1, 2009 | 242.5     | 58768                                             | 0.519            |
| DAMA/LIBRA-7      | Sep. 1, 2009 - Sept. 8, 2010  | 242.5     | 62098                                             | 0.515            |
| DAMA/LIBRA-phase1 | Sept. 9, 2003 - Sept. 8, 2010 | - /       | $379795 \simeq 1.04 \text{ ton} \times \text{yr}$ | 0.518            |
| DAMA/NaI + DAMA/L | IBRA–phase1:                  |           | 1.33 ton×yr                                       |                  |

single-hit events: each detector has all the rest in anticoincidence



New run with improved PMs and threshold reduced to 1 keV is under way.

Wait for 6 years of data taking before releasing new analysis

#### Analysis of residuals of single-hit events

![](_page_17_Figure_2.jpeg)

A: modulation amplitude

**2-4 keV** A=(0.0167±0.0022) cpd/kg/keV  $\chi^2$ /dof = 52.3/49 **7.6 \sigma C.L.** 

Absence of modulation? No  $\chi^2$ /dof=111.2/50  $\Rightarrow$  P(A=0) = 1.5×10<sup>-6</sup>

#### 2-5 keV

A=(0.0122±0.0016) cpd/kg/keV  $\chi^2$ /dof = 41.4/49 **7.6**  $\sigma$  **C.L.** 

Absence of modulation? No  $\chi^2$ /dof=98.5/50 $\Rightarrow$  P(A=0) = 5.2×10<sup>-5</sup>

#### **2-6 keV**

A=(0.0096±0.0013) cpd/kg/keV  $\chi^2$ /dof = 29.3/49 **7.4**  $\sigma$  **C.L.** Absence of modulation? No  $\chi^2$ /dof=83.1/50  $\Rightarrow$  P(A=0) = 2.2×10<sup>-3</sup>

Stefano Ragazzi – LNGS & UNIMIB

#### **DAMA/LIBRA – annual modulation**

![](_page_18_Figure_1.jpeg)

### **DAMA: Model Independent Annual Modulation**

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

 $R(t) = S_0 + Y_m \cos[\omega(t - t^*)]$ 

- No modulation above 6 keV
- No modulation in the whole energy spectrum
- No modulation in the 2-6 keV multiple-hit events

Systematics or other processes do not explain quantitatively the measured modulation amplitude and simultaneously satisfy the signal characteristics.

• DAMA/LIBRA - phase 1 concluded:

the data of the last annual cycle will be released soon

New investigations on other rare processes in progress

DAMA/Nal (7 years) + DAMA/LIBRA (6 years) Total exposure: 425428 kg×day = 1.17 ton×yr EPJC 56(2008)333, EPJC 67(2010)39

CoEPP-CAASTRO Workshop 2014

Stefano Ragazzi – LNGS & UNIMIB

### **CRESST-II**

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_20_Picture_3.jpeg)

- $\rightarrow$  phonon channel provides precise measurement of deposited energy
- $\rightarrow$  Light channel distinguishes types of interaction
- $\rightarrow$  Types of recoiling nuclei distinguished by different slopes in light energy plane

CoEPP-CAASTRO Workshop 2014

21

Stefano Ragazzi – LNGS & UNIMIB

#### **CRESST-II**

#### energy/LY discrimination

![](_page_21_Figure_2.jpeg)

CoEPP-CAASTRO Workshop 2014

Stefano Ragazzi – LNGS & UNIMIB

22

### **CRESST - II**

- single upgraded detector module: new fully scintillating design (metal holding clamps replaced by CaWO<sub>4</sub> sticks)
- fully-efficient active discrimination of Pb recoils
- low-theshold analysis

![](_page_22_Figure_4.jpeg)

#### **CRESST-II result**

#### spin independent (~A<sup>2</sup>) WIMP-nucleon scattering

![](_page_23_Figure_2.jpeg)

#### The XENON DM program

#### 2005 - 2007

2008-2015

![](_page_24_Picture_4.jpeg)

#### 2012-2017

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_7.jpeg)

**XENON100** 30 cm drift TPC - 161 kg XENÓN1T 100 cm drift TPC - 3300 kg

CoEPP-CAASTRO Workshop 2014

25

Stefano Ragazzi – LNGS & UNIMIB

### **Liquid Xenon as WIMP detector**

- Good target for both SI (A~131) and SD WIMP-N interactions (<sup>129</sup>Xe & <sup>131</sup>Xe)
- Highest event rate for massive WIMPs
- Unique ability to measure single e<sup>-</sup> with a two-phase TPC:
  - allows detection of light WIMPs through charge-channel only
- Enables large mass, homogeneous, self-shielded, easily scalable detector.
- Highest ionization and scintillation yield among all noble liquids
- Simultaneous charge and light detection enables ER/NR discrimination
- 3D event localization, double-scatter rejection and self-shielding provide powerful background rejection
- Excellent dielectric, inert, no long-lived radioactive isotopes.

![](_page_25_Figure_10.jpeg)

### **Double phase Xenon TPC**

- Particle interaction in the active volume produces prompt scintillation (S1) and ionization electrons
- Electrons which reach the liquid/gas interface are extracted, accelerated in the gas gap and detected as proportional light (S2)
- PMTs in liquid and gas detect S1 and S2
- Charge/light depends on dE/dx: (S2/S1)<sub>WIMP</sub> << (S2/S1)<sub>gamma</sub>
- 3D-position sensitive detector with particle ID

S2

1.0

0.2

electron recoil

**S1** 

nuclear recoil

175 180 185 190 195 200 205

CoEPP-CAASTRO Workshop 2014

0.0 175 180 185 190 195 200 205 210 21

![](_page_26_Figure_6.jpeg)

#### WIMP-like in XENON100

![](_page_27_Figure_1.jpeg)

#### **XENON100 SD results**

#### Bkg 5.3×10<sup>-3</sup> kg<sup>-1</sup>d<sup>-1</sup> before S1/S2 disceimination

![](_page_28_Figure_2.jpeg)

 $SI < 2 \times 10^{-45} \text{ cm}^2$  for M=55 GeV

### XENON1T

- Two-phase TPC with 1 meter drift and ~1 m diameter electrodes exploiting ~3.3 tonnes of Xe
- Experiment designed to enable a fast upgrade to a larger diameter TPC exploiting ~7 tonnes of Xe
- Schedule: under construction at LNGS started fall 2013
- Science Goal: 2x10<sup>-47</sup> cm<sup>2</sup> with 2 ton-years of data or by 2017
- Funded with 50% of capital cost covered by NSF and the rest from Europe and Israel.

#### **XENON1T sensitivity goal**

![](_page_30_Figure_1.jpeg)

#### **XENON1T Systems**

![](_page_31_Figure_1.jpeg)

#### **XENON1T**

HALL-B Sep. 2014

# Data in summer 2015

![](_page_32_Picture_3.jpeg)

33

Stefano Ragazzi – LNGS & UNIMIB

#### **Outreach**

![](_page_33_Picture_1.jpeg)

#### OPEN DAY @ LNGS:1.500-2.000 visitors/year

![](_page_33_Picture_3.jpeg)

Visits to underground lab: 8000 visitors/year

34

![](_page_34_Picture_0.jpeg)

Labs for young students: 500-1000 students/years

![](_page_34_Picture_2.jpeg)

Competitions for schools: ~1700 students/year

![](_page_34_Picture_4.jpeg)

Summer Schools for students and teachers **ITIS GALILEO** : theatre performance in the underground lab; was seen by 2.5 million people on a national TV channel.

![](_page_35_Picture_1.jpeg)