MQXF RRP® Strand for Q1/Q3

A. K. Ghosh

MQXF Conductor Review November 5-6, 2014 CERN

Outline

- Introduction
- RRP[®] Strand
- RRP[®] 108/127 Strand for MQXFS1
 - Design change for RRR Control
- RRP[®] 132/169 MQXF strand
- Present status of wire performance
 - Comparison of vendor and LARP data on Ic
 - Ic and RRR optimization
- Strand Magnetization
- Cable and Insulation
- RRR of Extracted strand
- Summary

Introduction

For the MQXF Q1/Q3 Magnets we will most likely use RRP® wire from Oxford Superconducting Technology Strand diameter 0.85 mm •Ti-Ternary Nb₃Sn Cable is a 40- strand Rutherford Cable with stainless steel core

- The 1st Short model MQXFS1 magnet is using coils made with 108/127 strand.
- Subsequent Short model and Long prototype MQXF magnets will use 132/169 design wire (smaller filament diameter)

RRP[®] strands with smaller filaments

- Smaller sub-elements can minimize flux jumps and improve stability.
- Filament Magnetization decreases

Courtesy of Jeff Parrell (OST)

Sub-element (Filament) diameter D_s

— R=Cu/Non-Cu=1.2 , 45.5% SC, 54.5 % Cu

Table of Sub-element diameter in μm

Strand						
Design	54/61	84/91	108/127	132/169	192/217	
			# of Sub-elements			
D_w , mm	54	84	108	132	192	
0.9	83	66	58	53	44	
0.85	78	63	55	50	41	
0.778	71	57	50	46	38	
0.7	64	52	45	41	34	

Ti-Ternary 108/127 Strand Production

- From prior experience we found that RRR is not well controlled in the "standard" RRP-wire. (details in a later presentation by A. Ghosh and D. Dietderich)
- For the LARP order of 410 Kg which used 12 billets, OST introduced a small design change in the sub-element
 - This production was used to resolve RRR control
 - 6 billets use standard Tin content (Nb/Sn ratio=3.4)
 - 6 billets use 5%-Reduced Tin content (Nb/Sn ratio=3.6)
- Reduced Tin has significant impact on the RRR of the copper.
 - Side-effect: Marginal decrease in J_c.
- Piece lengths have been very good; some billets drew down in a single piece.

MQXF Strand Specification

Process	RRP [®] or PIT Nb3Sn		
Strand Diameter, mm	0.850 ± .003		
Ic(15 T) at 4.2 K, A	> 361		
n-value	> 30		
Ic(12 T) at 4.2 K, A (Reference Only)	(> 632)		
Ds, μm (sub-element diameter)	< 50		
Cu : Non-Cu volume Ratio	1.2 ± 0.1		
RRR (after full reaction)	≥ 150		
Twist Pitch, mm	19 ± 2		
Twist Direction	Right-hand screw		
Strand Spring Back, deg.	< 720		
Magnetization Width at 3 T, 4.2 K, mT	< 300		
Minimum Piece length, m	TBD for Q1/Q2/Q3		

Specification for MQXF Strand LARP-M-8007 Rev.0

Process	Ti-Ternary RRP [®] Nb ₃ Sn	
Strand Diameter, mm	0.850 ± .003	
Ic(15 T) at 4.2 K, A	> 361	$J_c(15 \text{ T}) > 1400 \text{ A/mm}^2$
n-value	> 30	
Ds, μm (sub-element diameter)	< 50	132/169
Cu : Non-Cu volume Ratio	1.2 ± 0.1	
RRR (after full reaction)	≥ 150	Nb/Sn ratio > 3.4 to meet RRR
Twist Pitch, mm	19 ± 2	
Twist Direction	Right-hand screw	
Strand Spring Back, deg.	< 720	
Magnetization Width at 3 T, 4.2 K, mT	< 300	
Minimum Piece length, m	550	
High temperature HT duration, h	≥ 48	

RRP 132/169 strand for MQXF short model magnets

 LARP had an existing PO of 255 Kg (~55 km) for 108/127 under specification LARP-M-8004-Rev. B

Process	Ti-Ternary RRP [®] Nb ₃ Sn	
Strand Diameter, mm	0.85 ± .003	
Ic(15 T) at 4.2 K, A	> 361 Exceptio	<i>n:I_c</i> (15 T) > 350 A
Ic(12 T) at 4.2 K, A	> 684	
n-value	> 30	
Ds, μm (sub-element diameter)	< 60	
Cu : Non-Cu volume Ratio	> 1.1	
RRR (after full reaction)	≥ 150	
Twist Pitch, mm	14 ± 2	
Twist Direction	Right-hand screw	
Minimum Piece length, m	750	
High temperature HT duration, h	≥ 48	

RRP 132/169 strand for MQXF model magnets

- LARP had an existing PO of 255 Kg (~55 km) for 108/127 under specification LARP-M-8004-Rev. B
 - This was converted to 132/169- strand with "reduced-Sn", using Nb Type-1.
 - Exception to I_c (15 T) specification: 350 A (compared to 361 A)
 - Strand qualified using HT schedule: 210C/48h + 400C/48h + 665C/50h
 - 9 billets were made
 - I_c, RRR and Cu/non-Cu measurements made at OST for samples taken from the front-end and back-end of each billet.
 - I_c and RRR measurements made at BNL using samples reacted with the same nominal HT schedule

MQXF strand 132/169, "reduced-Sn", OST data 210C/48h + 400C/48h + 665C/50h

RRR of the billets with the same HT

RRR is well above specification minimum of 150

Cu/Non-Cu ratio

Comparison of BNL and OST data

Samples were reacted and measured at each facility I_c(15T) I_c(12T) I_c(12T) I_c(12T) OST/ I_c(12T)_OST/ RRR RRR I_c(15T)_BNL I_c(12T)_BNL BNL OST BNL OST **BNL** OST 374 370 692 687 99.0% 99.3% 288 315 Average 15 15 19 20 1.0% 1.0% 38 32 σ

OST and LARP measurements are very consistent

	Н, Т	Ic_OST	Ic_BNL	n_OST	n_BNL
Round Robin					
Test of samples	11.0		819		52
reacted at BNL	12.0	681	678	50	46
	13.0	557	558	48	46
	14.0	447	450	46	41
	15.0	352	355	44	35
	16.0	269		34	

Optimizing 132/169 for MQXF

Longer times at 665 °C

Arup Ghosh

Magnetization of MQXF 132/169

Magnetization of 0.85 mm,108/127 and 132/169 at 1.9 K

Magnetization scales with filament diameter

X. Wang

Measurements performed at OSU

By M. Sumption and X. Xu

Cable Insulation at LARP

- Insulation is braided directly on cable
 - New England Wire Technology (NEWT)
- Using S-2[®] glass (from AGY) with 933 Silane sizing
 - 48 carriers
 - 2 ply yarn, twist pitch 75 mm
- Several lengths of QXF cable has been insulated
 - Using braiding parameters to yield target specification of 0.145 ± 0.005 mm thickness

 10-stack measurements at 5 MPa are used to determine insulation thickness

Each Cable length					
~ 170 m	Measurement at 5 MPa				
~170 m					
Cable ID	I st Cycle	2 nd Cycle	3 rd Cycle		
1050Z	0.142	0.140	0.140		
1051Z	0.143	0.140	0.138		
1053Z	0.154	0.149	0.147		
1055Z	0.148	0.145	0.143		
1057Z-A	0.149	0.146	0.145		
1057Z-B	0.149	0.146	0.145		

 Thickness can be readily adjusted to meet any change to present specification.

Summary

- The "reduced-Sn" design change increases RRR manufacturing margin with minimal loss of J_c.
 - Implemented for all billets in process and future procurements.
- RRP[®] 132/169 wire can meet strand specs
 - Manufacturing margin in I_c needs to be increased by good control of the Nb/Sn ratio, and by reaction optimization
- LARP plan implements 132/169-strand in MQXFS2 magnet and all MQXFL prototypes.
- Strand procurement has been planned to meet cable manufacture and coil winding schedule. (Later Presentation)
- Specification and Production QA plan and documents is being finalized this fiscal year for pre-production lots and preparing for issuing call for RFP(Request For Proposal) for the production.

End of Presentation

