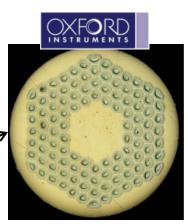
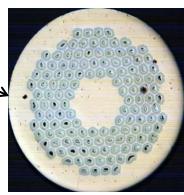
MQXF Q1/Q3 Conductor Procurement

A. K. Ghosh

MQXF Conductor Review November 5-6, 2014 CERN

Outline


- Introduction
- MQXFS and MQXFL Magnet Strand and Cable
 - Strand procurement for the prototype magnet (qualification phase or pre-production phase)
- MQXF Strand Production/Procurement Plan
 - Phase I followed by Phase II production
 - QA/QC plan at vendor and within the project
- MQXF Cable
 - Cabling,
 - Insulation and Testing
 - QA
- Summary



2

Introduction

- For the MQXF Q1/Q3 Magnets we will likely use RRP[®] wire from Oxford Superconducting Technology
- Strand diameter 0.85 mm
 - Ti-Ternary Nb₃Sn
- Cable is a 40- strand Rutherford Cable with stainless steel core
- The 1st Short model MQXFS magnet is using coils made with 108/127 strand.
- Subsequent Short and Long MQXF magnets will use 132/169 design wire (smaller filament diameter)
- Final Specification Documents for the MQXF magnet strand will be released in June'2015.
 - It will be a performance based specification as is currently being used for LARP strand procurements.

LARP-MAG-M-8004-Rev. B (Present spec.)

Process	Ti-Ternary RRP [®] Nb ₃ Sn			
Strand Diameter, mm	0.85 ± .003			
I _c (12 T) at 4.2 K, A	≥ 684			
I _c (15 T) at 4.2 K, A	> 361			
n-value	> 30			
D _s , μm (sub-element diameter)	< 60			
Cu-fraction, %	> 53			
RRR (after full reaction)	≥ 150			
Twist Pitch, mm	14 ± 2			
Twist Direction	Right-hand screw			
Minimum Piece length, m	750			
High temperature HT duration, h	≥ 48			
	D sub-element dia			

D_s sub-element diameter I_c Critical Current RRR residual resistivity ratio

MQXF Strand Specification

Process	RRP [®] or PIT Nb3Sn
Strand Diameter, mm	0.850 ± .003
I _c (15 T) at 4.2 K <i>,</i> A	> 361
n-value	> 30
I _c (12 T) at 4.2 K, A (Reference Only)	(> 632)
D _s , μm (sub-element diameter)	< 50
Cu : Non-Cu volume Ratio	1.2 ± 0.1
RRR (after full reaction)	≥ 150
Twist Pitch, mm	19 ± 2
Twist Direction	Right-hand screw
Strand Spring Back, deg.	< 720
Magnetization Width at 3 T, 4.2 K, mT	< 300
Minimum Piece length, m	TBD

LARP-MAG-M-8007 Rev.0 (TBR)

Process	Ti-Ternary RRP [®] Nb ₃ Sn				
Strand Diameter, mm 0.85 ± .003					
I _c (15 T) at 4.2 I	<i>Κ,</i> Α	> 361			
I _c (12 T) at 4.2 I	K, A (for reference)	(≥ 632)			
n-value		> 30			
D _s , μm (sub-el	ement diameter)	< 50			
Cu:Non-Cu v	olume Ratio	1.2 ± 0.1			
RRR (after full	reaction)	≥ 150			
Twist Pitch, mr	n	19 ± 2			
Twist Direction	1	Right-hand screw			
Strand Spring I	Back, deg.	< 720			
Magnetization	Width at 3 T, 4.2 K, mT	< 300			
Minimum Piec	e length, m	550			
High temperat	ure HT duration, h	≥ 48			

D_s sub-element diameter I_c Critical Current RRR residual resistivity ratio

Procurement Plan for MQXF RRP-132/169 strand leading up to the Prototype magnet

- Require 6 coils for short MQXF; cable unit length 150 m
- Require 16 coils for Long MQXF; cable unit length 450 m
- Assuming 12% loss in strand from cable mapping
- Total length of strand for MQXFS: ~ 50 km (250 Kg)
 - 55 km of strand is in inventory
- Total length required for MQXFL: 350 km (~ 1750 Kg)
 - 12 km in inventory
 - 17 km awaiting delivery pending all tests
 - A total of 320 km has to be procured in FY'15 & FY'16
- Present specification LARP-MAG-M-8004 Rev. B
 - Is being replaced by LARP-MAG-M-8007

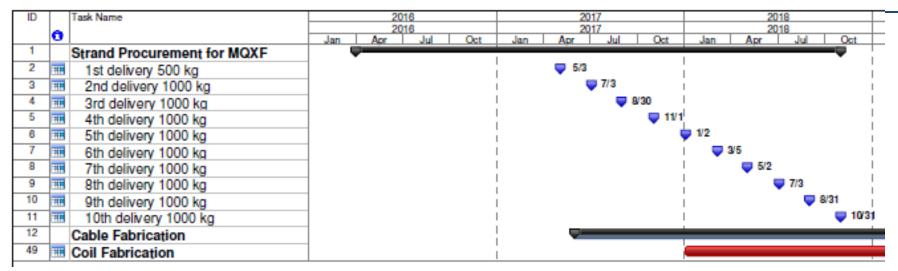
7

Procurement Plan for MQXF Q1/Q3Magnets

- Require 90 coils for Q1 and Q3
- Unit length of cable : 450 m
- Assuming 12% loss in strand from cable mapping
- Total length of strand for UL of cable: 22.4 km
- Total length required for project: 2016 km (~ 10,000 Kg)
 - ~ 225-250 billets depending on yield
 - Present billet size is 45 Kg
- Coil production start: Jan'2018
- Cable Production start: June 2017
 - Final Strand Specification set June'2015
 - RFP sent out Oct'2015
 - Contract placed Apr'2016
 - Phased Production
 - Phase 1 : First delivery of 500 Kg May'2017
 - Phase 2 : Production Phase July'2017 through Oct'2018
 - Delivery complete Oct'2018

Strand Delivery Schedule

ID	Task Name	2016	2017	2018	2019	2020	2021	2022
		2016	2017	2018	2019	2020	2021	2022
-	0	Jan Apr Jul Oct						
1	Strand Procurement for MQXF			_				
2	1st delivery 500 kg		V 5/3					
3	2nd delivery 1000 kg		7/3	i i	1	I	i i	Ì
4	3rd delivery 1000 kg		98/30			1		
5	4th delivery 1000 kg		Q 11/1			1		
6	5th delivery 1000 kg		i s	1/2		1		i
7	6th delivery 1000 kg		1	Q 3/5		1	1	
8	7th delivery 1000 kg		1	5 /2		1		
9	8th delivery 1000 kg		1	7/3		1		
10	9th delivery 1000 kg		I	98/31	1	I	I I	
11	10th delivery 1000 kg		1	U 10/3	1	1		
12	Cable Fabrication		—					
49	Coil Fabrication		1					
1								


ID		Task Name		2016 2016 Jan Aor Jul Oct				2017 2017 Jan Apr	
	0		Jan						
1		Strand Procurement for MQXF		_				Circle	
2	===	1st delivery 500 kg						5/3	
3	===	2nd delivery 1000 kg					I	7 🤿	
4	===	3rd delivery 1000 kg					1		
5	===	4th delivery 1000 kg					1		
6	===	5th delivery 1000 kg					' 		
7	===	6th delivery 1000 kg					I		
8	===	7th delivery 1000 kg							
9	===	8th delivery 1000 kg					 		
10		9th delivery 1000 kg					I		
11	===	10th delivery 1000 kg					l		
12		Cable Fabrication						$\overline{}$	
49	===	Coil Fabrication					1		

First delivery after 12 months of placing of contract

Cable mapping using first 500 Kg of wire 1 UL will use wire from at least 3 billets

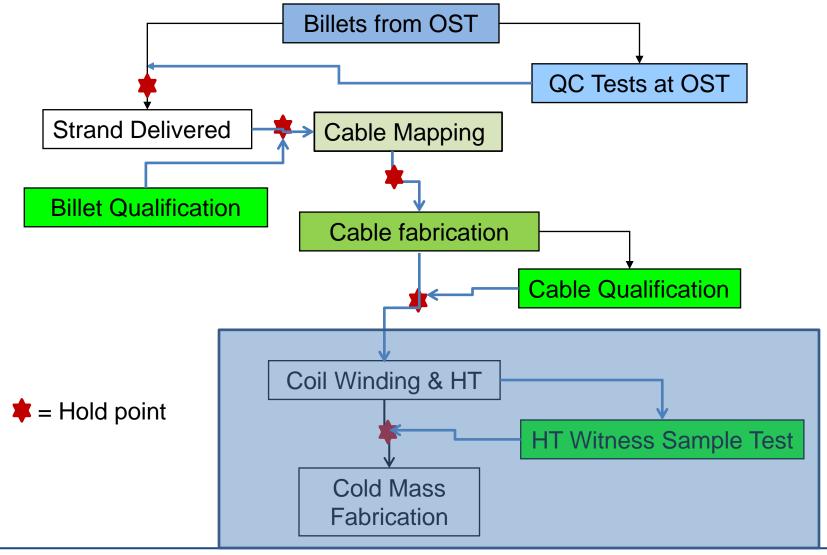
Strand Delivery Schedule

OST (most likely vendor for RRP wire) has sufficient capacity to handle both CERN and US orders in the same time frame. Production rate ~ 1 metric ton/month. During ITER the production rate was ~ 2 tons/month.

10

Cabling and Insulation Plan

- Cabling at LBNL
- Cabling to start 5-6 months in advance of start of coil winding.
- Cabling Start June 2017
 - Unit length is fabricated within 1 week.
- Cabling throughput required 2 UL's / month at start, ramping to 3 UL's/month by July'2018
- S2 glass Insulation braided directly onto cable
- Vendor: New England Wire Technology (qualified)
 - Sufficient capacity to keep up with cabling rate, 2 braiders available.
 - Unit length insulated within 5 working days.



QA-Plan

Conductor Qualification - 1

Conductor Qualification -2

- Billet Qualification
 - Primarily based on vendor QA/QC
 - Apply SPC to track uniformity of strand production
 - QC tests on a smaller subset of samples at a US lab
 - Phase I will have more extensive checks than Phase 2
 - OST data will be verified periodically with measurements at a US lab.
- Cable Qualification
 - This is important and needs to be completed prior to coil winding.
 - Mechanical tests, metallographic test, insulation thickness
 - $\rm I_{c}$ and local RRR electrical test: minimum 3 extracted strand and one round wire
 - Heat Treatment schedule (HT) as specified for coil reaction

Strand QC Tests and Reports

- QC Tests and Reports
 - Cu/Non Cu
 - Twist Pitch and Twist Direction
 - Ic, n-Value, RRR
 - Magnetization Width
 - Wire Springback
 - Surface Cleanliness Certification
 - Eddy Current Certification
 - Final Wire Diameter
 - Piece Length
- Material Certifications:
 - Tin Rod
 - Niobium Rod
 - Niobium/Titanium Rod
 - Niobium Sheet
 - Copper Tube

Ian Pong will elaborate on the QA/QC plan

Cable QC Tests and Reports

- QC Tests and reports
 - Cable dimensions from CMM
 - Cable 10-stack measurements
 - Cable cross-section microscopy
 - Cable Residual Twist
 - RRR of Extracted strand
 - Ic, n value of extracted strands
 - Cabling Report
 - Cable Piece Length
 - Insulation thickness
- Material Certifications:
 - Insulation fiber
 - Stainless Steel core

Summary

- Strand procurement has been planned to meet coil winding schedule.
 - Strand production will last for 30 months
 - Phase I used to assess vendor QA/QC and set control limits on full production
- Cabling start is planned for 5 months before coil winding
 - Goal is to be well ahead of cable required for coil winding
- Peak cabling rate of 3 unit lengths/ month during production can be handled at LBNL
 - Cable throughput ramps up after one year of operation.
- Final Specification documents and Strand and Cable production QA plan to be released in time for strand RFP (Request For Proposal) solicitation in Oct'2015.

End of Presentation

Cable Insulation

- Insulation is braided directly on cable
 - New England Wire Technology (NEWT)
- Using S-2[®] glass (from AGY) with 933 Silane sizing
- 6 lengths of MQXF cable (170 m long) has been insulated
 - Using braiding parameters to yield target specification of 0.145 \pm 0.005 mm thickness
 - 10-stack measurements at 5 MPa are used to determine insulation thickness
 - Thickness can be readily adjusted to meet any change to present specification.

