Variable gravity: A suitable framework for quintessential inflation

Md. Wali Hossain

Ð

Centre for Theoretical Physics JMI, New Delhi

Collaborators: R. Myrzakulov, M. Sami and E. N. Saridakis

Saha Theory Workshop: Cosmology at the Interface, 29^{th} January, 2015, SINP, Kolkata, India

Quintessential inflation

Plan:

- Quintessential inflation
- Variable gravity frame work
- Inflation
- Late time acceleration
- Summary

What is it?

A unified description of inflation and late time cosmic acceleration:

What is it?

A unified description of inflation and late time cosmic acceleration:

• Scalar field behaves like inflaton at early epochs \implies Inflation.

What is it?

A unified description of inflation and late time cosmic acceleration:

- Scalar field behaves like inflaton at early epochs \implies Inflation.
- Same scalar field behaves like quintessence field at the late times ⇒ Late time cosmic acceleration.

Slow roll conditions:

$$\boxed{\epsilon = \frac{M_{\rm Pl}^2}{2} \left(\frac{1}{V} \frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2 \ll 1, \qquad \qquad \eta = \frac{M_{\rm Pl}^2}{V} \frac{\mathrm{d}^2 V}{\mathrm{d}\phi^2} \ll 1}$$

Slow roll conditions:

$$\left[\epsilon = \frac{M_{\rm Pl}^2}{2} \left(\frac{1}{V} \frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2 \ll 1, \qquad \eta = \frac{M_{\rm Pl}^2}{V} \frac{\mathrm{d}^2 V}{\mathrm{d}\phi^2} \ll 1\right]$$

 $\epsilon \approx \eta \approx 1 \Longrightarrow$ End of inflation \Longrightarrow Reheating \Longrightarrow Potential needs a minimum.

Slow roll conditions:

$$\boxed{\epsilon = \frac{M_{\rm Pl}^2}{2} \left(\frac{1}{V} \frac{\mathrm{d}V}{\mathrm{d}\phi}\right)^2 \ll 1, \qquad \qquad \eta = \frac{M_{\rm Pl}^2}{V} \frac{\mathrm{d}^2 V}{\mathrm{d}\phi^2} \ll 1}$$

 $\epsilon \approx \eta \approx 1 \Longrightarrow$ End of inflation \Longrightarrow Reheating \Longrightarrow Potential needs a minimum.

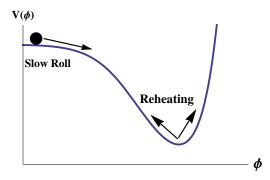


Figure : Schematic diagram of a potential needed for inflation

Ф

A slowly rolling scalar field \implies QUINTESSENCE \implies Energy density varies with time.

A slowly rolling scalar field \implies QUINTESSENCE \implies Energy density varies with time.

• Equation of state of the scalar field is $w_{\phi} = \frac{\dot{\phi}^2 - 2V}{\dot{\phi}^2 + 2V}$

 \implies $w_{\phi} \approx 1$ when $\dot{\phi}^2 \gg 2V$. \implies $w_{\phi} \approx -1$ when $\dot{\phi}^2 \ll 2V$.

A slowly rolling scalar field \implies QUINTESSENCE \implies Energy density varies with time.

• Equation of state of the scalar field is $w_{\phi} = \frac{\dot{\phi}^2 - 2V}{\dot{\phi}^2 + 2V}$

 \implies $w_{\phi} \approx 1$ when $\dot{\phi}^2 \gg 2V$. \implies $w_{\phi} \approx -1$ when $\dot{\phi}^2 \ll 2V$.

•
$$\rho_{\phi} = \rho_{\phi 0} \mathrm{e}^{-3 \int (1 + \mathrm{w}_{\phi}) \mathrm{da/a}}.$$

 $\implies \rho_{\phi} \sim a^{-6}$ when $w_{\phi} = 1 \implies$ Kinetic energy dominated regime. $\implies \rho_{\phi} \approx \text{const.}$ when $w_{\phi} \approx -1 \implies$ Potential energy dominated regime.

A slowly rolling scalar field \implies QUINTESSENCE \implies Energy density varies with time.

• Equation of state of the scalar field is $w_{\phi} = \frac{\dot{\phi}^2 - 2V}{\dot{\phi}^2 + 2V}$

 \implies $w_{\phi} \approx 1$ when $\dot{\phi}^2 \gg 2V$. \implies $w_{\phi} \approx -1$ when $\dot{\phi}^2 \ll 2V$.

•
$$\rho_{\phi} = \rho_{\phi 0} \mathrm{e}^{-3 \int (1 + \mathrm{w}_{\phi}) \mathrm{da/a}}.$$

 $\implies \rho_{\phi} \sim a^{-6}$ when $w_{\phi} = 1 \implies$ Kinetic energy dominated regime. $\implies \rho_{\phi} \approx \text{const.}$ when $w_{\phi} \approx -1 \implies$ Potential energy dominated regime.

• Two kind of behavior \implies Tracker and Thawing.

Tracker

Scalar field tracks the background during the radiation and matter era and take over matter at recent past \implies Late time solution is an attractor for a wide range of initial conditions

P. J. Steinhardt, L. -M. Wang and I. Zlatev, PRD 59, 123504 (1999)

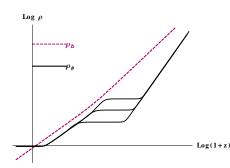


Figure : Schematic diagram of tracker behavior

- All paths are converging to a common evolutionary track.
- Not all potential can give rise to tracker behavior ⇒ A limitation.

•
$$\Gamma > 1$$
 where $\Gamma = \frac{V''V}{V'^2}$.

- Runaway potentials like $\frac{1}{\phi^n}$ or exponential potential $e^{M/\phi}$ can give rise to tracker solution.
- Field's EoS goes towards -1.

()

Tracker

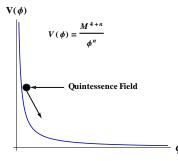


Figure : Schematic diagram of inverse power law potential, a runaway potential.

- Steep nature of the potential is needed. Hubble friction 3H φ increases since φ increases while rolling down the steep region of the potential ⇒ Field's evolution freezes and energy density becomes comparable with the background energy density ⇒ Field starts evolving and follow the background up to recent past.
- Some potentials which reduce to inverse power law and exponential nature asymptotically can also give tracker solution → Example: Double exponential or cos hyperbolic potential.

Quintessential Inflation

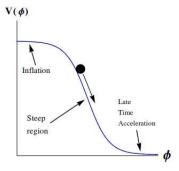


Figure : Schematic diagram of an effective potential which can give quintessential inflation.

Quintessential Inflation

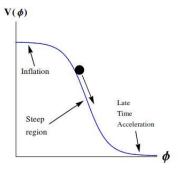


Figure : Schematic diagram of an effective potential which can give quintessential inflation.

Problems

- Find out a suitable potential.
- Scalar field survives until late times ⇒ potential is typically of a run-away type ⇒ One requires an alternative mechanism of reheating *e.g.*, instant preheating.
- Long kinetic regime enhances the amplitude of relic gravitational waves ⇒ violates nucleosynthesis constraints at the commencement of radiative regime.

æ

How to build the unified picture?

CASE I: Brane Inflation

- Invoke Randall-Sundrum (RS) braneworld corrections to facilitate inflation with steep potential at early epochs.
- As the field rolls down to low energy regime, the braneworld corrections disappear, giving rise to a graceful exit from inflation and thereafter the scalar field has the required behavior.

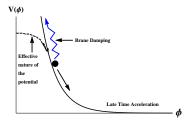


Figure : Schematic diagram of an effective potential of quintessential inflation with brane damping term.

Variable Gravity Framework (CASE II)

C. Wetterich, PRD 89, 024005 (2014)

In Einstien frame:

- There is a coupling between massive neutrinos and non-canonical scalar field.
- This coupling is necessary to get late time acceleration.
- Dark energy scale is related with neutrino mass scale.

Variable Gravity Framework (CASE II)

C. Wetterich, PRD 89, 024005 (2014)

In Einstien frame:

- There is a coupling between massive neutrinos and non-canonical scalar field.
- This coupling is necessary to get late time acceleration.
- Dark energy scale is related with neutrino mass scale.

Let us consider the following action,

C. Wetterich, PRD **89**, 024005 (2014) MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, PRD **90**, 023512 (2014)

$$S = \int d^4 x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{k^2(\phi)}{2} \partial^{\mu} \phi \partial_{\mu} \phi \right] - V(\phi) + S_m + S_r +$$

Variable Gravity Framework (CASE II)

C. Wetterich, PRD 89, 024005 (2014)

In Einstien frame:

- There is a coupling between massive neutrinos and non-canonical scalar field.
- This coupling is necessary to get late time acceleration.
- Dark energy scale is related with neutrino mass scale.

Let us consider the following action,

C. Wetterich, PRD **89**, 024005 (2014) MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, PRD **90**, 023512 (2014)

$$\begin{split} \mathcal{S} &= \int d^4 x \sqrt{-g} \bigg[\frac{M_{\rm Pl}^2}{2} R - \underbrace{\frac{k^2(\phi)}{2} \partial^{\mu} \phi \partial_{\mu} \phi}_{2} - V(\phi) \bigg] + \mathcal{S}_m + \mathcal{S}_r \\ & + \mathcal{S}_{\nu} (\mathcal{C}^2 g_{\alpha\beta}; \Psi_{\nu}) \bigg], \end{split}$$

$$\begin{split} k^{2}(\phi) &= \left(\frac{\alpha^{2} - \tilde{\alpha}^{2}}{\tilde{\alpha}^{2}}\right) \frac{1}{1 + \beta^{2} \mathrm{e}^{\alpha \phi/\mathrm{M}_{\mathrm{Pl}}}} + 1\,,\\ \mathcal{C}^{2}(\phi) &= A \mathrm{e}^{2\tilde{\gamma}\alpha\phi/M_{\mathrm{Pl}}}, \qquad V(\phi) = M_{\mathrm{Pl}}^{4} \mathrm{e}^{-\alpha\phi/\mathrm{M}_{\mathrm{Pl}}}, \end{split}$$

where $\beta \implies$ can be fixed from inflation.

Canonical Form of the Action

Let us consider the transformation,

$$egin{aligned} &\sigma &= \Bbbk(\phi)\,, \ &k^2(\phi) &= \left(rac{\partial \Bbbk}{\partial \phi}
ight)^2 \end{aligned}$$

The action becomes,

$$\begin{split} \mathcal{S}_{E} &= \int d^{4} \times \sqrt{g} \left[\frac{M_{\mathrm{Pl}}^{2}}{2} R - \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - V(\mathbb{k}^{-1}(\sigma)) \right] \\ &+ \mathcal{S}_{m} + \mathcal{S}_{r} + \mathcal{S}_{\nu}(\mathcal{C}^{2} g_{\alpha\beta}; \Psi_{\nu}) \,. \end{split}$$

 $\implies \sigma$ is the canonical scalar field.

Asymptotic behavior of the canonical field

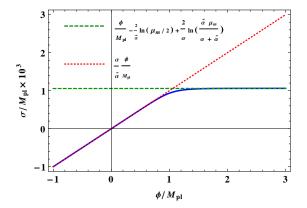


Figure : Blue (solid) line represents the behavior of σ field. Parameter values are $\alpha = 10$, $\tilde{\alpha} = 0.01$ and $\beta = 0.01$.

Potential

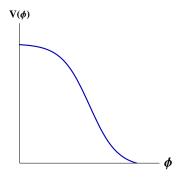


Figure : Schematic diagram of the potential for variable gravity

Effect of Neutrinos Coupled with Scalar Field

- Non-minimal coupling modifies the EoM of scalar field $\implies \tilde{\gamma}\alpha (\rho_{\nu} - 3p_{\nu}).$
- $p_{\nu} = \frac{1}{3} \rho_{\nu} \implies$ Neutrinos behave like radiation \implies No modification.
- Modification comes into play only when neutrinos become nonrelativistic $\implies p_{\nu} = 0$ \implies Effective potential forms $\implies V_{\text{eff}} = V(\sigma) + f(\sigma)$ where $f(\sigma)$ is a growing function.

Effect of Neutrinos Coupled with Scalar Field

- Non-minimal coupling modifies the EoM of scalar field $\implies \tilde{\gamma}\alpha (\rho_{\nu} - 3p_{\nu}).$
- $p_{\nu} = \frac{1}{3}\rho_{\nu} \implies$ Neutrinos behave like radiation \implies No modification.
- Modification comes into play only when neutrinos become nonrelativistic ⇒ p_ν = 0 ⇒ Effective potential forms ⇒ V_{eff} = V(σ) + f(σ) where f(σ) is a growing function.

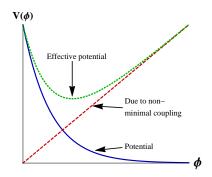


Figure : Schematic diagram of an effective potential.

Effect of Neutrinos Coupled with Scalar Field

- Non-minimal coupling modifies the EoM of scalar field $\Rightarrow \tilde{\gamma}\alpha (\rho_{\nu} - 3p_{\nu}).$
- $p_{\nu} = \frac{1}{3}\rho_{\nu} \implies$ Neutrinos behave like radiation \implies No modification.
- Modification comes into play only when neutrinos become nonrelativistic ⇒ p_ν = 0 ⇒ Effective potential forms ⇒ V_{eff} = V(σ) + f(σ) where f(σ) is a growing function.

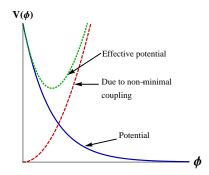


Figure : Schematic diagram of an effective potential.

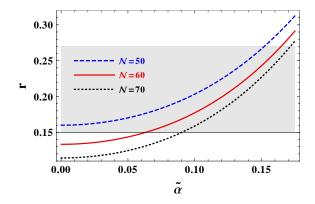


Figure : The tensor-to-scalar ratio (r) versus the model parameter $\tilde{\alpha}$, for different e-foldings \mathcal{N} . Blue (dashed), red (solid) and black (dotted) lines correspond to $\mathcal{N} = 50$, 60 and 70 respectively. The shaded region marks the BICEP2 constraint on r at 1σ confidence level, that is $r = 0.2^{+0.07}_{-0.05}$.

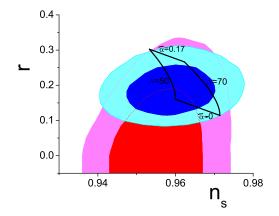


Figure : 1σ (blue) and 2σ (cyan) contours for *Planck* + *WP* + *highL* + *BICEP2* data, and 1σ (red) and 2σ (pink) contours for *Planck* + *WP* + *highL* data, on the $n_{\rm s} - r$ plane. The black solid curves bound the region predicted in our model for efoldings between $\mathcal{N} = 50$ and $\mathcal{N} = 70$ and for the parameter $\tilde{\alpha}$ between 0^+ and 0.175. The lower line ($\tilde{\alpha} \rightarrow 0$) is for \mathcal{N} from 50 to 70, the left curve ($\mathcal{N} = 50$) is for $\tilde{\alpha}$ from 0^+ to 0.17, the right curve ($\mathcal{N} = 70$) is for $\tilde{\alpha}$ from 0^+ to 0.17, and the upper line ($\tilde{\alpha} = 0.17$) is for \mathcal{N} from 50 to 70.

Energy scale of inflation $\implies V_{\rm in}^{1/4}$ where,

$$V_{
m in} = rac{2.5 imes 10^{-7} ilde{lpha}^2 M_{
m Pl}^4}{\left(1-{
m e}^{- ilde{lpha}^2 \mathcal{N}}
ight)}\,.$$

For $\mathcal{N}=60$ we can have r=0.2 for $\tilde{lpha}=0.12$

 $\implies V_{\rm in}^{1/4} = 2.46 \times 10^{16} {
m GeV}.$

Relic Gravitational Waves Spectrum

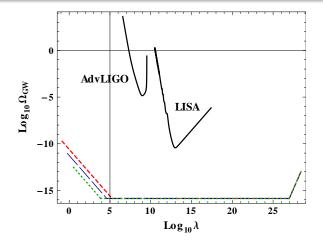


Figure : Spectral energy density of relic gravity wave background for different reheating temperatures. Red (dashed), Blue (long dashed) and Green (dotted) lines for $g = 5 \times 10^{-4}$, 0.01 and 0.3 respectively. α is taken to be 10. Also we have considered $\mathcal{N} = 70$ for this plot but it is checked that the behavior does not change significantly for the variation of \mathcal{N} from 50 to 70. Black solid curves represent the expected sensitivity curves of Advanced LIGO and LISA.

Evading Lyth Bound

MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, arXiv:1405.7491.

For variable gravity scenario,

$$\implies \delta \phi \gtrsim \left(\mathcal{N} M_{\rm Pl} \sqrt{\frac{r_{\star}}{8}} \right) \frac{\tilde{\alpha}}{\alpha}.$$

Evading Lyth Bound

MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, arXiv:1405.7491.

For variable gravity scenario,

$$\implies \delta \phi \gtrsim \left(\mathcal{N} M_{\rm Pl} \sqrt{\frac{r_{\star}}{8}} \right) \left(\frac{\tilde{\alpha}}{\alpha} \right).$$

For canonical scalar field: For $r_{\star} \gtrsim 0.1$ and $\mathcal{N} = 50$ $\implies \delta \phi \gtrsim 5 M_{\rm Pl} \implies$ Super-Planckian field.

Evading Lyth Bound

MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, arXiv:1405.7491.

For variable gravity scenario,

$$\implies \delta \phi \gtrsim \left(\mathcal{N} M_{\mathrm{Pl}} \sqrt{\frac{r_{\star}}{8}} \right) \left(\frac{\tilde{\alpha}}{\alpha} \right).$$

For canonical scalar field:
For
$$r_{\star} \gtrsim 0.1$$
 and $\mathcal{N} = 50$
 $\implies \left(\delta \phi \gtrsim 5 M_{\rm Pl}\right) \implies$ Super-Planckian field.

For variable gravity scenario:

From early dark energy constraint $\implies \alpha \gtrsim 20$. For $\mathcal{N} = 60$, $r_{\star} = 0.15$, $\alpha = 20$ and $\tilde{\alpha} = 0.06 \implies \delta\phi \ge 0.0246 M_{\rm Pl}$ \implies Sub Planckian From the ratio $V_{\rm end}/V_{\rm in}$ it can be shown that $\delta\phi \approx 5/\alpha \implies$ For $\alpha = 20$

 $\implies \delta \phi = 0.25 M_{\rm Pl} \implies$ respects the Lyth bound.

Effective potential

$$V_{
m eff}(\phi) = V(\phi) + \hat{
ho}_{
u} e^{(ilde{\gamma} lpha \phi / M_{
m Pl})} \,.$$

where $\hat{\rho}_{\nu} = \rho_{\nu} e^{-(\tilde{\gamma} \alpha \phi/M_{\rm Pl})}$ is independent of ϕ .

Effective potential at the minimum,

$$V_{
m eff,min} = (1+ ilde{\gamma})
ho_
u(\phi_{
m min})\,.$$

 $\implies \rho_{\rm DE} \approx V_{\rm eff,min} \sim \rho_{\nu} \implies {\rm Sets} \mbox{ dark energy scale through neutrino} \\ {\rm mass scale}.$

$$x = \frac{\dot{\sigma}}{\sqrt{6}HM_{\rm Pl}}$$

$$y = \frac{\sqrt{V}}{\sqrt{3}HM_{\rm Pl}}$$

$$\Omega_m = \frac{\rho_m}{3H^2M_{\rm Pl}^2}$$

$$\Omega_r = \frac{\rho_r}{3H^2M_{\rm Pl}^2}$$

$$\Omega_\nu = \frac{\rho_\nu}{3H^2M_{\rm Pl}^2}$$

$$\Omega_\sigma = \frac{\rho_\sigma}{3H^2M_{\rm Pl}^2}$$

Ð

$$\begin{split} x &= \frac{\dot{\sigma}}{\sqrt{6}HM_{\rm Pl}} = \frac{\sqrt{3}}{\sqrt{2}\alpha(1+\tilde{\gamma})},\\ y &= \frac{\sqrt{V}}{\sqrt{3}HM_{\rm Pl}} = \pm \frac{\sqrt{3+2\alpha^2\tilde{\gamma}(1+\tilde{\gamma})}}{\sqrt{2}\alpha(1+\tilde{\gamma})},\\ \Omega_m &= \frac{\rho_m}{3H^2M_{\rm Pl}^2} = 0,\\ \Omega_r &= \frac{\rho_r}{3H^2M_{\rm Pl}^2} = 0,\\ \Omega_\nu &= \frac{\rho_\nu}{3H^2M_{\rm Pl}^2} = \frac{-3+\alpha^2(1+\tilde{\gamma})}{\alpha^2(1+\tilde{\gamma})^2},\\ \Omega_\sigma &= \frac{\rho_\sigma}{3H^2M_{\rm Pl}^2} = \frac{\tilde{\gamma}}{1+\tilde{\gamma}} + \frac{3}{\alpha^2(1+\tilde{\gamma})^2}. \end{split}$$

Ð

$$\begin{split} x &= \frac{\dot{\sigma}}{\sqrt{6}HM_{\rm Pl}} = \frac{\sqrt{3}}{\sqrt{2}\alpha(1+\tilde{\gamma})} \,, \\ y &= \frac{\sqrt{V}}{\sqrt{3}HM_{\rm Pl}} = \pm \frac{\sqrt{3+2\alpha^2\tilde{\gamma}(1+\tilde{\gamma})}}{\sqrt{2}\alpha(1+\tilde{\gamma})} \,, \\ \Omega_m &= \frac{\rho_m}{3H^2M_{\rm Pl}^2} = 0 \,, \\ \Omega_r &= \frac{\rho_r}{3H^2M_{\rm Pl}^2} = 0 \,, \\ \Omega_\nu &= \frac{\rho_\nu}{3H^2M_{\rm Pl}^2} = \frac{-3+\alpha^2(1+\tilde{\gamma})}{\alpha^2(1+\tilde{\gamma})^2} \,, \\ \Omega_\sigma &= \frac{\rho_\sigma}{3H^2M_{\rm Pl}^2} = \frac{\tilde{\gamma}}{1+\tilde{\gamma}} + \frac{3}{\alpha^2(1+\tilde{\gamma})^2} \,. \end{split}$$

$$egin{aligned} & w_{ ext{eff}} = -rac{ ilde{\gamma}}{1+ ilde{\gamma}} \ & w_{\sigma} = -rac{lpha^2 ilde{\gamma}(1+ ilde{\gamma})}{3+lpha^2 ilde{\gamma}(1+ ilde{\gamma})} \end{aligned}$$

23/26

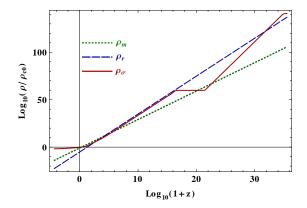


Figure : Evolutions of different energy densities (ρ). ρ_r (Blue dashed), ρ_m (Green dot-dashed), ρ_σ (Red solid (upper panel)), represent the densities of radiation, matter, scalar field and σ . ρ_{c0} is the critical energy density of universe at present. To plot this figure we have considered $\alpha = 10$, $\tilde{\gamma} = 30$ and $z_{\rm dur} = 10$.

- A unified model of inflation and dark energy is investigated in variable gravity framework.
- Model gives the tensor-to-scalar ratio and thereby the inflation scale consistent with the BICEP2.
- Blue spectrum in relic gravity wave spectrum is present due to the presence of kinetic regime.
- Lyth bound can be evaded due to the constraint on post-inflationary dynamics.
- Model has a stable late time attractor which can cause late time acceleration for large $\tilde{\gamma}.$

THANK YOU

