Generation of Magnetic fields during pre-recombination

S. Shankaranarayanan

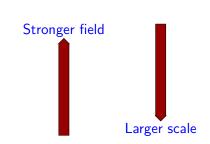
School of Physics, IISER-Trivandrum

Ophélia Fabre To be Submitted

Cosmology at Interface, SINP, Kolkata 29 January 2015

Overview

- Observation of Magnetic fields Current upper and lower bounds
- Generation of seed Magnetic fields Current theoretical models
- Our Model
 - Vorticity generation Thomson scattering
 - From Vorticity to Magnetic fields Coulomb scattering
 - Comparison with the current observations
- Conclusions and Future work

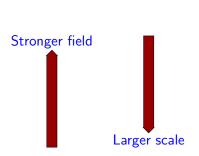

Observations of magnetic fields

- Since late 70's, compelling observational evidence for the presence of large scale magnetic fields
- Range of field strength

 $1 G = 10^{-4} T$

Magnetic fields in the Universe

- Since late 70's, compelling observational evidence for the presence of large scale magnetic fields
- Range of field strength
- One LHC magnet 10^5 GThe Earth 10^{-1} GStar $1 10^{15}$ GMolecular cloud 10^{-3} GInterstellar medium 10^{-6} GCluster of galaxies $10^{-7} 10^{-6}$ GVoid 10^{-16} G (10 Mpc)

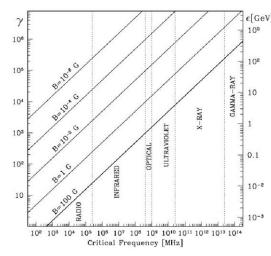


 $1 G = 10^{-4} T$

Magnetic fields in the Universe

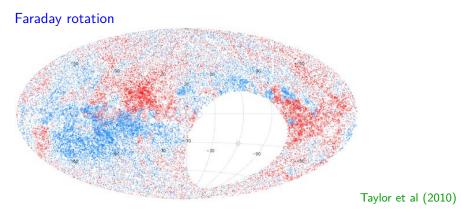
- Since late 70's, compelling observational evidence for the presence of large scale magnetic fields
- Range of field strength

One LHC magnet	10 ⁵ G
The Earth	10 ⁻¹ G
Stars	$1-10^{15}\ \text{G}$
Molecular cloud	10 ⁻³ G
Interstellar medium	10 ⁻⁶ G
Cluster of galaxies	$10^{-7}-10^{-6}\ {\rm G}$
Void	$\geqslant 10^{-16}~{ m G}$

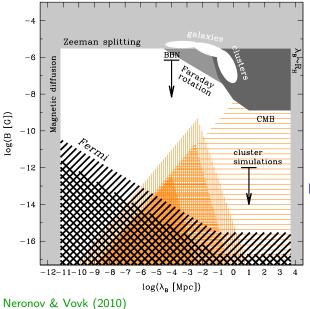


 $1 G = 10^{-4} T$

Detection methods


Synchrotron emission

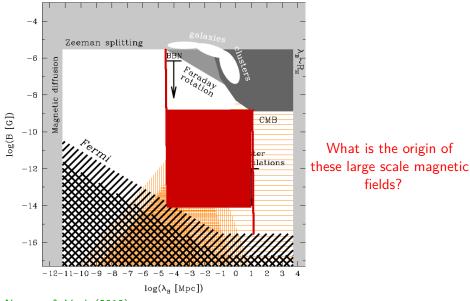
- produced by the spiraling motion of relativistic electrons in *B*
- total emission provides an estimate of $|\vec{B}| \langle n_e \vec{B}^2 \rangle$
- degree of polarization provides uniformity and structure
- $B_{
 m galaxy} \approx 10^{-6}
 m G$ coherence length 1 - 10
 m kpc


Credit: Govoni & Ferriti (2004)

Detection methods

- polarized radiation from a distant object passes through \vec{B} of an intervening object and is altered $\sim \int n_e \vec{B} \cdot d\vec{l}$
- $B_{
 m galaxy} \approx 0.1 \mu$ G coherence length 10 kpc

Cosmological Magnetic fields: Limits


Upper bound

- BBN $\sim 0.1 \ \mu G$ [Grasso & Rubinstein '01]
- CMBR ~ nG [Yamazaki et al '10]
- Reionization ~ nG [Schleicher & Miniati '11]

Lower bound

• TeV Blazar/FERMI $\sim 10^{-6} \text{ nG}$ [Tavechio et al '11]

Cosmological Magnetic fields: Limits

Neronov & Vovk (2010)

Generation of magnetic fields

Generation of magnetic fields

Grasso & Rubinstein '01, Widrow '02

Late times $(z \sim 20)$

- fields generated in proto galaxies; spilled to IGM
- Experimental Constraints ⇒ fields of 10⁻¹⁵ G are in every void
- \bullet difficult to produce fields with such coherence length (10 $\rm Kpc)$

Grasso & Rubinstein '01, Widrow '02

Late times $(z \sim 20)$

- fields generated in proto galaxies; spilled to IGM
- Experimental Constraints ⇒ fields of 10⁻¹⁵ G are in every void
- \bullet difficult to produce fields with such coherence length (10 $\rm Kpc)$

Early times (z > 1000)

- Inflation; breaking of conformal invariance
- QCD or EW phase transition
- causal process of large scale generation;
- difficult to generate required strength $(10^{-15}G)$

Generation of magnetic fields

Grasso & Rubinstein '01, Widrow '02

Late times $(z \sim 20)$

- fields generated in proto galaxies; spilled to IGM
- Experimental Constraints ⇒ fields of 10⁻¹⁵G are in every void
- \bullet difficult to produce fields with such coherence length (10 $\rm Kpc)$

Early times (z > 1000)

- Inflation; breaking of conformal invariance
- QCD or EW phase transition
- causal process of large scale generation;
- difficult to generate required strength $(10^{-15}G)$

Talk will focus on new mechanism that generates in intermediate scales

Evolution of magnetic field and matching with observations

► Model

- pre-decoupling era z > 1000Dark ages 1000 < z < 10Galaxy formation z < 10Current Measurements
- freezing of magnetic flux; high conductivity of the medium
- $B \propto a^{-2}$
- $B_1 = 10^{-2} \times B_{\text{seed}}$
- matter collapse; adiabatic compression
- formation of first structures
- $B_2 = 10^4 \times B_1 = 10^2 \times B_{\text{seed}}$
- Galactic or inter-galactic dynamo mechanism (uncertainty)
- easier to have amplification in dense regions
- Amplification factor $\mathcal{A} = [10^7, 10^{28}]$
- $B_{\rm obs} = \mathcal{A} \times B_2 = \mathcal{A} \times 10^2 \times B_{seed}$

Model and its predictions

Features

 $1 eV \sim 10^4 K$

- Before recombination; energy range 20 < T < 100 eV
- No new physics
- Generation of the Vorticity through the mechanism introduced by Berezhiani and Dolgov (2003)

Model and assumptions

Features

$1 eV \sim 10^4 K$

- Before recombination; energy range 20 < T < 100 eV
- No new physics
- Generation of the Vorticity through the mechanism introduced by Berezhiani and Dolgov (2003)

Ingredients

- Universe = hot, dense plasma
- protons + electrons + photons + dark matter
- *n_e*: number density of electrons
- *n_p*: number density of protons
- n_{γ} : number density of photons
- charge neutrality $\implies n_e = n_p$
- Radiation dominated $\implies \beta = n_e/n_\gamma = 6 \times 10^{-10}$ (CMBR)

• Thomson scattering of photons on free electrons :

 $e^- + \gamma \Rightarrow e^- + \gamma$ Responsible for vorticity generation

• Coulomb scattering of electrons on protons:

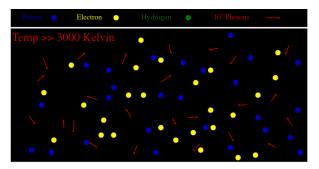
 $p + e^- \Rightarrow p + e^-$ Responsible for magnetic field generation

Interactions

• Thomson scattering of photons on free electrons :

 $e^- + \gamma \Rightarrow e^- + \gamma$ Responsible for vorticity generation

• Coulomb scattering of electrons on protons:


 $p + e^- \Rightarrow p + e^-$ Responsible for magnetic field generation

• $v_p \ll v_{e^-} \ll v_{\gamma}$

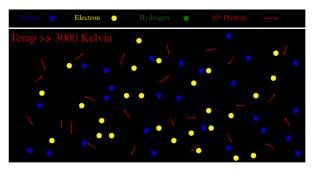
• $v_p << v_{e^-}$: induced current \vec{J} leading to seed magnetic field \vec{B}_{seed} • $v_{e^-} << v_{\gamma}$: plasma velocity $v \approx v_{\gamma}$

Vorticity generation

• Plasma has low Reynold's number.

Electrons scatter of Photons efficiently.

Uniform distribution of Photons do not generate any Vorticity.

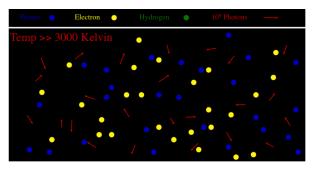

• Boltzmann equation for f_{γ}

 $\left(\partial_t + \vec{V}.
abla
ight) f_{\gamma}(t, \vec{x}, E, \vec{p}) = I_{
m coll}[f_i] \propto \Gamma_{
m Th}$

• \vec{V} is particle velocity (for photons, electrons) and not macroscopic fluid velocity \vec{v}

•
$$f_{\gamma} \approx f_{\gamma}^{(0)} = e^{-E/7}$$

Vorticity generation


primordial perturbations reenter producing changes in the photon distribution

Electrons are not uniformly scattered everywhere resulting in small vorticity generation.

$$\mathcal{K} = \partial_t + V \cdot \nabla - H\vec{p} \cdot \partial_{\vec{p}} + F \cdot \partial_{\vec{p}}$$

$$\begin{split} f_{\gamma}^{(1)} &= -\left(\frac{1}{\Gamma_{\mathrm{Th}}}\mathcal{K}f_{\gamma}^{(0)} - \frac{1}{\Gamma_{\mathrm{Th}}^{2}}(\partial_{t} + V_{j}\partial_{j})\mathcal{K}f_{\gamma}^{(0)} + \frac{3}{\Gamma_{\mathrm{Th}}^{2}}\left[\frac{\partial_{t}T}{T} + V_{j}\frac{\partial_{j}T}{T}\right]\mathcal{K}f_{\gamma}^{(0)}\right) \\ f_{\gamma}^{(2)} &= -\int_{0}^{t} \mathrm{d}\tau_{1}\exp\left[-\int_{0}^{\tau_{1}}\mathrm{d}\tau_{2}\Gamma_{\mathrm{Th}}(t-\tau_{2},\vec{x}-\vec{v}\tau_{2})\right]\mathcal{K}f_{\gamma}^{(1)}(t-\tau_{1},\vec{x}-\vec{v}\tau_{1}) \end{split}$$

Vorticity generation

Changes in the Photon distribution function induces macroscopic changes in the plasma fluid, specifically non-zero vorticity.

• Average macroscopic velocity of the plasma \vec{v}

$$egin{aligned} \mathbf{v}_k &= rac{1}{\int \mathrm{d}^3 ec{p} \; f_\gamma^{(0)}} \int \mathrm{d}^3 ec{p} \; V_k f_\gamma \end{aligned}$$

• Vorticity $(\vec{\Omega} = \vec{\nabla} \times \vec{v})$ is $\Omega \approx 12 \times 10^3 \times c \frac{\ell_{\gamma}^3}{\lambda^4} \left(\frac{\delta T}{T}\right)^2$

From Vorticity to Magnetic fields

MHD equation for a conductive fluid:

$$\partial_t ec{B}_{ ext{seed}} = ec{
abla} imes (ec{
u} imes ec{B}_{ ext{seed}}) + rac{e \, n_e}{\kappa} ec{\Omega}$$

• Seed magnetic field \vec{B}_{seed}

• Conductivity due to interactions κ

• Fluid velocity \vec{v}

• Vorticity $\vec{\Omega} = \vec{\nabla} \times \vec{v}$

$$B_{\rm seed} \approx \boldsymbol{t} \times \boldsymbol{e} \times \boldsymbol{n}_{e} \frac{\Omega}{\kappa}$$

 $B_{
m seed} \propto \kappa^{-1} \implies$ process with lowest κ lead to maximum contribution

Conductivity of the processes

• Conductivity

 $\kappa = J/E = e^2 n_e \Delta t/m_e$ Δt time between 2 collisions

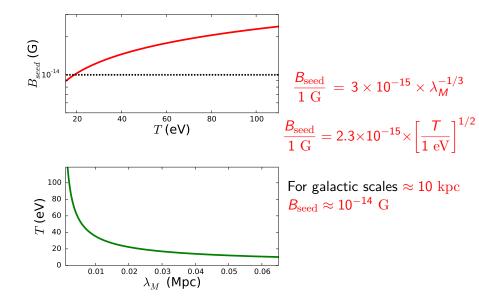
κ_{Coul}(κ_{Th}) conductivity due to Coulomb (Thomson) scattering
Ratio of conductivities

$$\frac{\kappa_{\rm Th}}{\kappa_{\rm Coul}} = \frac{\beta \ln(\Lambda)}{\sqrt{\pi}} \left(\frac{m_e c^2}{k_B T}\right)^{5/2} \approx 10^{-9} \times \frac{1}{\left(T_{\rm MeV}\right)^{5/2}}$$

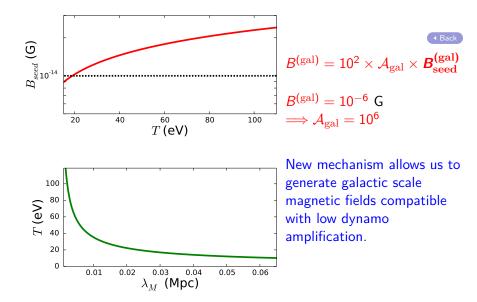
• For 1 < T < 100 eV,

$$rac{1}{\kappa_{
m Coul}} \gg rac{1}{\kappa_{
m Th}} \qquad \Longrightarrow \qquad rac{1}{\kappa} pprox rac{1}{\kappa_{
m Coul}}$$

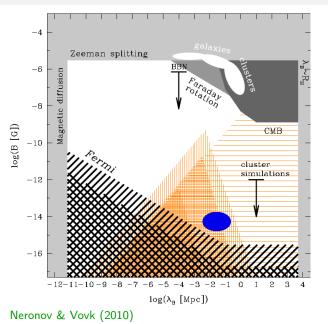
Seed Magnetic field


• B_{seed}

$$\frac{\boldsymbol{B}_{\text{seed}}}{\left(k_BT\right)^2} \left(\epsilon_0 \hbar^3 c^5\right)^{1/2} \approx 2.4 \times \left(\frac{m_e c^2}{k_BT}\right)^{1/2} \times \beta \ln(\Lambda) \times \frac{ct\ell_{\gamma}^3}{\lambda^4} \left(\frac{\delta T}{T}\right)^2$$


- Let us consider fluctuations entering the Hubble horizon at T >> 1 eV during the radiation-domination era.
- $\lambda_M = \lambda_0/1$ Mpc: actual coherence length B_{seed} , where λ_0 is the actual size of the fluctuations

$$\frac{T}{1 \text{ eV}} = 1.64 \times \lambda_M^{-2/3}$$
$$\lambda_M = 2.1 \times \left(\frac{T}{1 \text{ eV}}\right)^{-3/2}$$


Magnetic field generated

Magnetic field generated

Constraints on B and λ_B

- Grey: known observational bounds on extra-galactic *B*
- BBN constraints
- Black hatched region: lower bound on extra-galactic *B* derived from *Fermi*
- Orange hatched regions: constraints on seed fields generated.
- Our model predicts

 $B \simeq 10^{-14} G$ $\lambda_M \sim 10 kPc$

Conclusion and perspectives

Conclusion

- Intermediate scale, mechanism to generate large-scale magnetic fields
- Based of the known physics of the cosmological plasma just before recombination
- With low galactic dynamo amplification, recover galactic \vec{B} fields detected strength

Perspectives

- More accurate evaluation of Coulomb and Thomson contributions in the Boltzmann equation
- Imprints of these \vec{B} fields on the Cosmic Microwave Background (CMB), especially on its \vec{E} and \vec{B} -modes

Thank you for your attention