Inflation after Planck

Supratik Pal

Indian Statistical Institute Kolkata

January 30, 2015

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ● ● ● ●

- The ABC of Inflation
- CMB à la WMAP9 and Planck 2013

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Test of inflationary predictions
- Status of inflationary models

Puzzles of standard Big Bang Cosmology

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ● ● ● ●

- Horizon
- Flatness
- Monopole
- Structure formation...

Puzzles of standard Big Bang Cosmology

- Horizon
- Flatness
- Monopole
- Structure formation...

Wayout

Super-fast accelerated expansion at the beginning \Longrightarrow Inflation

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dynamics? \longrightarrow Scalar field

EM tensor components $\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$; $p_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$ Governing Equations

$$H^{2} = \frac{1}{3M_{P}^{2}} \left[\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right]$$
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Dynamics? \longrightarrow Scalar field

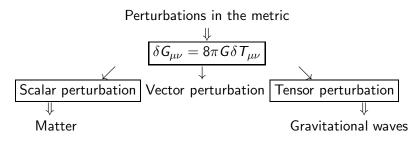
EM tensor components $\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$; $p_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$ Governing Equations

$$H^{2} = \frac{1}{3M_{P}^{2}} \left[\frac{1}{2} \dot{\phi}^{2} + V(\phi) \right]$$
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

Employ slow roll condition

$$\begin{split} \dot{\phi}^2 << V(\phi) \quad ; \quad |\ddot{\phi}| << 3H|\dot{\phi}|, V'(\phi) \\ \text{Slow roll parameters } \epsilon_V &= \frac{M_P^2}{2} \left[\frac{V'}{V}\right]^2 \ll 1 \\ \eta_V &= M_P^2 \left[\frac{V''}{V}\right] \ll 1 \\ \text{For sufficient inflation } N &= \ln \frac{a_f}{a_i} \approx -\frac{1}{M_P^2} \int_{\phi_i}^{\phi_f} \frac{d\phi}{\sqrt{2\epsilon_V}} \quad \approx 56 - 70 \end{split}$$

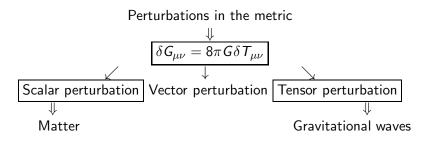
Quantum fluctuations of inflaton are transformed to classical perturbations



Solves Puzzle No.4

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - のの⊙

Quantum fluctuations of inflaton are transformed to classical perturbations



Solves Puzzle No.4

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - のの⊙

First impression: Too good to be true!!

Observable	Scalar modes	Tensor modes
parameters		
Power spectrum	$P_R(k) = rac{k^3}{2\pi^2} rac{ v ^2}{z^2} _*$	$P_T(k) = 2 \times \frac{k^3}{2\pi^2} \frac{2}{M_P^2} \frac{ u ^2}{a^2} _*$
Tensor to scalar ratio		$r = \frac{P_T _*}{P_R _*}$
Spectral index	$n_S = 1 + \frac{d \ln P_R(k)}{d \ln k} _*$	$n_T = \frac{d \ln P_R(k)}{d \ln k} _*$
Running of S.I.	$\alpha_{\mathcal{S}} = \frac{dn_s}{d\ln k} _*$	$\alpha_T = \frac{dn_s}{d \ln k} _*$

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ● りへぐ

 $* \Rightarrow k = aH$

Observable	Scalar modes	Tensor modes
parameters		
Power spectrum	$P_R(k) = rac{k^3}{2\pi^2} rac{ v ^2}{z^2} _*$	$P_T(k) = 2 \times \frac{k^3}{2\pi^2} \frac{2}{M_P^2} \frac{ u ^2}{a^2} _*$
Tensor to scalar ratio		$r = \frac{P_T _*}{P_R _*}$
Spectral index	$n_S = 1 + \frac{d \ln P_R(k)}{d \ln k} _*$	$n_T = \frac{d \ln P_R(k)}{d \ln k} _*$
Running of S.I.	$\alpha_{\mathcal{S}} = \frac{dn_s}{d\ln k} _*$	$\alpha_T = \frac{dn_s}{d\ln k} _*$

 $* \Rightarrow k = aH$

+ Consistency relation $r = 16\epsilon = -8n_T$

more or less generic for

slow roll

■ single scalar, canonical, minimally coupled

• $c_s \approx 1$

- Perturbations generate specific peaks in CMB \Rightarrow Give Ω'^{s}
- \blacksquare Spatially flat universe $\Rightarrow \Omega_{\rm tot} \approx 1 \pm 10^{-4}$
- Adiabatic perturbations ⇒ all species share a common perturbation
- Gaussian perturbations ⇒ stochastic properties completely determined by spectrum

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Perturbations generate specific peaks in CMB \Rightarrow Give Ω'^{s}
- \blacksquare Spatially flat universe $\Rightarrow \Omega_{\rm tot} \approx 1 \pm 10^{-4}$
- Adiabatic perturbations ⇒ all species share a common perturbation
- Gaussian perturbations ⇒ stochastic properties completely determined by spectrum

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

■ Scalar modes dominant. $P_R(k) \simeq P_R(k_*) (\frac{k}{k_*})^{n_s-1}$ $P_R(k_*) \propto \frac{V(\phi)}{24\pi^2 \epsilon_V} \Rightarrow$ small initial fluctuations

- Perturbations generate specific peaks in CMB \Rightarrow Give Ω'^{s}
- \blacksquare Spatially flat universe $\Rightarrow \Omega_{\rm tot} \approx 1 \pm 10^{-4}$
- Adiabatic perturbations ⇒ all species share a common perturbation
- Gaussian perturbations ⇒ stochastic properties completely determined by spectrum
- Scalar modes dominant. $P_R(k) \simeq P_R(k_*) (\frac{k}{k_*})^{n_s-1}$ $P_R(k_*) \propto \frac{V(\phi)}{24\pi^2 \epsilon_V} \Rightarrow$ small initial fluctuations
- $(n_s 1) = \text{small} \Rightarrow \text{nearly scale invariant power spectrum}$ $(n_s - 1) \neq 0 \Rightarrow \text{perturbations originated from dynamics of scalar field}$

(日) (日) (日) (日) (日) (日) (日) (日)

Generic spectrum $P_R(k) \simeq P_R(k_*) (\frac{k}{k_*})^{n_s - 1 + n'_s \ln(k/k_s)}$ $n'_s \neq 0 \Rightarrow$ deviation from power law

Tensor modes would be small but bear strong physical significance.

A small fraction of CMB photons get polarized due to quadrupole anisotropies. \Rightarrow 2 polarization modes (E & B)

B modes \rightarrow Gravitational waves + NG + Lensing...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Detection of tensor modes have direct reflection on energy scale of inflation (hence on fundamental physics)

Tensor modes would be small but bear strong physical significance.

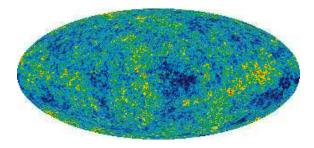
A small fraction of CMB photons get polarized due to quadrupole anisotropies. \Rightarrow 2 polarization modes (E & B)

B modes \rightarrow Gravitational waves + NG + Lensing...

Detection of tensor modes have direct reflection on energy scale of inflation (hence on fundamental physics)

Most of these predictions can be violated with more complicated models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



Background temperature $T_0 = 2.725K$ at all directions \Rightarrow The Universe is homogeneous and isotropic at largest scale How many parameters to describe the Universe? \longrightarrow 6 (or 7?)

$$\begin{array}{rl} \mathsf{Background} : \ \mathcal{T}_0 = 2.725 \mathcal{K} \longrightarrow \mathsf{Blackbody spectrum} \\ \mathsf{Fluctuations} : \ -200 \mu \mathcal{K} < \Delta \mathcal{T} < 200 \mu \mathcal{K} \\ & \Delta \mathcal{T}_{rms} \sim 70 \mu \mathcal{K} \\ & \Delta \mathcal{T}_{pE} \sim 5 \mu \mathcal{K} \\ & \Delta \mathcal{T}_{pB} \sim 10 - 100 n \mathcal{K} \end{array}$$

$$\begin{array}{ll} \mathsf{Background}: \ T_0 = 2.725 \mathcal{K} \longrightarrow \mathsf{Blackbody\ spectrum} \\ \mathsf{Fluctuations}: \ -200 \mu \mathcal{K} < \Delta T < 200 \mu \mathcal{K} \\ & \Delta T_{rms} \sim 70 \mu \mathcal{K} \\ & \Delta T_{pE} \sim 5 \mu \mathcal{K} \\ & \Delta T_{pB} \sim 10 - 100 n \mathcal{K} \end{array}$$

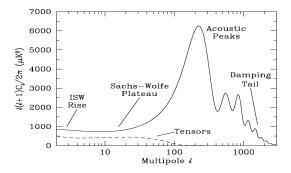
How to decode information?

- Temperature anisotropy T + two polarization modes E & B ⇒ Four CMB spectra: $C_l^{TT}, C_l^{EE}, C_l^{BB}, C_l^{TE}$
- Parity violation/systematics \Rightarrow Two more spectra: C_{I}^{TB}, C_{I}^{EB}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\Delta T(n) = \sum a_{lm} Y_{lm}(n) \Rightarrow$$
 2-point correlation fn.
 $C_l = \frac{1}{2l+1} \sum |a_{lm}|^2$

$$C_l = \int \frac{dk}{k} P_R(k) T_l^2(k)$$



Peak positions, heights and ratios give cosmological parameters \Rightarrow imprints of both early universe and late universe

500

Fundamental/ fit parameters

- $\Omega_b h^2 =$ baryonic matter density
- $\Omega_c h^2 = \text{dark}$ matter density
- $\Omega_X = dark energy density$
- P_R = primordial scalar power spectrum
- n_s = scalar spectral index
- au = optical depth
- r = tensor-to-scalar ratio

Altogether 6 (or 7 if $r \neq 0$)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - のの⊙

Fundamental/ fit parameters

- $\Omega_b h^2 =$ baryonic matter density
- $\Omega_c h^2 = \text{dark}$ matter density
- $\Omega_X = dark energy density$
- P_R = primordial scalar power spectrum
- n_s = scalar spectral index
- au = optical depth
- r = tensor-to-scalar ratio Altogether 6 (or 7 if $r \neq 0$)

Derived parameters

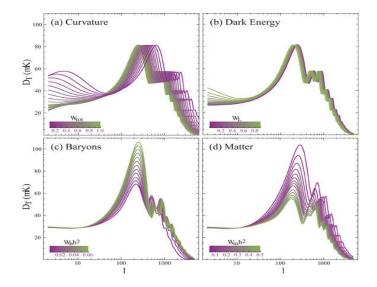
 t_0 , H_0 , Ω_b , Ω_c , Ω_m , Ω_k , Ω_{tot} , σ_8 , z_{eq} , z_{reion} ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parameters	WMAP 9	Planck 2013
P_R	$(2.464 \pm 0.072) imes 10^{-9}$	$(2.196^{+0.051}_{-0.060}) imes10^{-9}$
ns	0.9606 ± 0.008	0.9603 ± 0.0073
n's	-0.023 ± 0.001	-0.013 ± 0.009
r	< 0.13	< 0.11
Ω_b	0.04628 ± 0.00093	
Ω_c	$0.2402^{+0.0088}_{-0.0087}$	$\Omega_b+\Omega_c=0.315\pm0.017$
Ω_X	$0.7135^{+0.0095}_{-0.0096}$	$0.685^{+0.018}_{-0.016}$
au	0.088 ± 0.015	$0.089\substack{+0.012\\-0.014}$
H ₀	$69.32\pm0.80~\text{km/s/Mpc}$	$67.3\pm1.2~{ m km/s/Mpc}$
t ₀	13.772 ± 0.059 Gyr	13.817 ± 0.048 Gyr

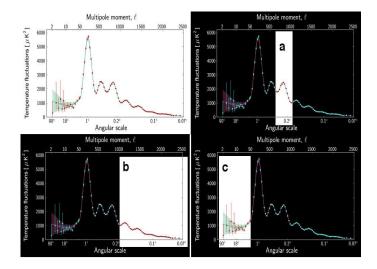
◆□▶▲@▶▲曲▶▲曲▼ ④�?

How sensitive to parameters the CMB TT plot is?



◆ロト ◆聞 ト ◆臣 ト ◆臣 ト ◆ 臣 ● 今へで

Planck 2013 highlights



◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Inflationary parameters	Planck 2013 results
P _R	$(2.196^{+0.051}_{-0.060}) imes 10^{-9}$
ns	0.9603 ± 0.0073
n's	-0.013 ± 0.009
r	< 0.11
n _T	> -0.048 at 95% <i>CL</i>
$100\Omega_k$	$-0.05\substack{+0.65\\-0.66}$
$f_{ m NL}^{ m loc}$	2.7 ± 5.8
$f_{ m NL}^{ m eq}$	-42 ± 75
$f_{ m NL}^{ m ortho}$	-25 ± 39

◆□▶▲@▶▲曲▶▲曲▼ ④�?

Boring universe, 6 parameters suffice More matter, less energy (slightly altered in Planck 2014?) Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト ◆ 臣 ● 今へで

Boring universe, 6 parameters suffice More matter, less energy (slightly altered in Planck 2014?) Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Inflation is non-trivial but non-exotic

Boring universe, 6 parameters suffice More matter, less energy (slightly altered in Planck 2014?) Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)

■ Inflation is non-trivial but non-exotic ■ $n_s \neq 1$ at $5\sigma \Rightarrow$ inflation from dynamical field, HZ ruled out

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Boring universe, 6 parameters suffice More matter, less energy (slightly altered in Planck 2014?) Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)

Inflation is non-trivial but non-exotic

■ $n_s \neq 1$ at $5\sigma \Rightarrow$ inflation from dynamical field, HZ ruled out

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Better results at high $l \Rightarrow$ Peaks direct evidence of BAO

Boring universe, 6 parameters suffice More matter, less energy (slightly altered in Planck 2014?) Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)

- Inflation is non-trivial but non-exotic
- $n_s \neq 1$ at $5\sigma \Rightarrow$ inflation from dynamical field, HZ ruled out

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - のの⊙

- **Better results at high** $I \Rightarrow$ Peaks direct evidence of BAO
- $r < 0.11 \Rightarrow$ GW yet undetected but better constrained

Boring universe, 6 parameters suffice More matter, less energy (slightly altered in Planck 2014?) Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)

- Inflation is non-trivial but non-exotic
- $n_s \neq 1$ at $5\sigma \Rightarrow$ inflation from dynamical field, HZ ruled out
- **Better results at high** $I \Rightarrow$ Peaks direct evidence of BAO
- $r < 0.11 \Rightarrow$ GW yet undetected but better constrained
- No conclusion on non-Gaussianity ⇒ cannot say if inflation is driven by single-field or multi-field

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Boring universe, 6 parameters suffice More matter, less energy (slightly altered in Planck 2014?) Little bit older universe (13.771 Gyr \rightarrow 13.817 Gyr)

Inflation is non-trivial but non-exotic

■ $n_s \neq 1$ at $5\sigma \Rightarrow$ inflation from dynamical field, HZ ruled out

- **Better results at high** $I \Rightarrow$ Peaks direct evidence of BAO
- $r < 0.11 \Rightarrow$ GW yet undetected but better constrained
- No conclusion on non-Gaussianity ⇒ cannot say if inflation is driven by single-field or multi-field

Outliners are still there \Rightarrow physical origin? Large scale anomalies : hemispherical asymmetry? Big cold spot \Rightarrow superstructure?

No!!

Can be claimed only when we detect

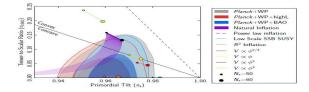
- *r* conclusively (BICEP2: $r \approx 0.2$ or dust??)
- n_T independently and verify consistency relation $r = -8n_T$ for
 - * slow roll
 - * single field, canonical, minimally coupled
 - * $c_s \approx 1$
- α_T (or confirm it is zero)
- $f_{\rm NL}$ for single field vs multi field debate

... but of course we are zeroing in!

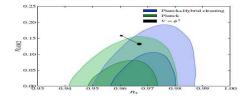
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What can we say about the inflationary models?

Chaotic + minimal copuling P.A.R.Ade et.al., 1303.5082

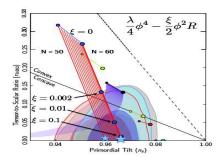


Tightly constrained. Different cleaning: Spergel et.al., PRD:2015



 ϕ^2 marginally consistent, and the set of ϕ^2

Chaotic + non-minimal coupling



Allowed, even ϕ^4 for $\xi/2 > 10^{-3}$

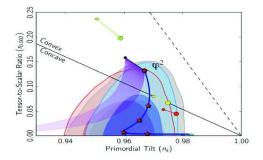
but issues, e.g. candidate inflaton? Higgs?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Polynomial (SUGRA?)

Kallos, Linde, JCAP: 2010

$$V(\phi) = \frac{m^2 \phi^2}{2} (1 - a\phi + a^2 b\phi^2)^2$$

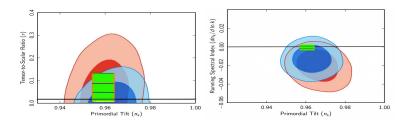


Allowed, with b = 0.34, a = 0, 0.03, 0.05, 0.1, 0.13

but issues, e.g. SUGRA origin is debatable \log

MSSM(inflection point) Choudhury, Majumdar, SP, JCAP:2013

$$V(\phi) = lpha + eta(\phi - \phi_0) + \gamma(\phi - \phi_0)^3 + \kappa(\phi - \phi_0)^4 + \cdots$$



Planck+WP9+BAO: Blue: $\Lambda CDM+r(\alpha_S)$, Red: $\Lambda CDM+r+\alpha_S$ Allowed, better fit for low /

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

990

Starobinsky model Starobinsky, Sov. Astron. Lett: 1983

$$L = \sqrt{-g} \left(\frac{R}{2} + \frac{R^2}{12M^2} \right), \quad M \ll M_p$$

can be reduced to canonical gravity + scalar field by field redefinition and metric transformation

$$N \sim 60 \Rightarrow n_S \sim 0.967, r \sim 0.003$$
$$N \sim 60 \Rightarrow n_S \sim 0.964, r \sim 0.004.$$

Allowed

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - のの⊙

Many models, except a few with very high r, are still allowed.

 All models lead to same predictions matching with Planck. Can they be incorporated into a common platform? Superconformal theory?? Universal attractor??
 Linde, 1402.0526

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 All models lead to same predictions matching with Planck. Can they be incorporated into a common platform? Superconformal theory?? Universal attractor??
 Linde, 1402.0526

Among all allowed models, which ones are more probable?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Most probable models

Model selection algorithm

Liddle et.al., astro-ph/0608184

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Consider 2 models

- \mathcal{M}_1 with one model parameter heta
- \mathcal{M}_2 with two model parameters α and β

How do they fair against some data $D? \Rightarrow$ maximum likelihood

$$\begin{split} \mathcal{L}_1 &= \mathcal{L}_{1,\max} \exp^{-\chi^2(\theta)/2} \quad ; \quad \mathcal{L}_2 = \mathcal{L}_{2,\max} \exp^{-\chi^2(\alpha,\beta)/2} \\ \text{But this does not distinguish between "complexity" of the models.} \end{split}$$

Most probable models

Model selection algorithm

Liddle et.al., astro-ph/0608184

Consider 2 models

- \mathcal{M}_1 with one model parameter heta
- \mathcal{M}_2 with two model parameters α and β

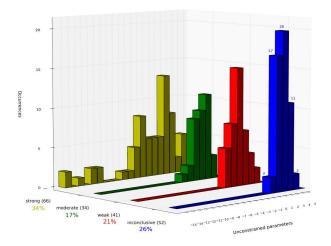
How do they fair against some data $D? \Rightarrow$ maximum likelihood

$$\begin{split} \mathcal{L}_1 &= \mathcal{L}_{1,\max} \exp^{-\chi^2(\theta)/2} \quad ; \quad \mathcal{L}_2 = \mathcal{L}_{2,\max} \exp^{-\chi^2(\alpha,\beta)/2} \\ \text{But this does not distinguish between "complexity" of the models.} \end{split}$$

Occam's razor : penalize complex models. Best models are those who can make best compromise between simplicity and quality of fits

Calculate Bayesian evidence $\mathcal{E}_1 = \int \mathcal{L}_1(D/\theta)\pi(\theta)d\theta$; $\mathcal{E}_2 = \int \mathcal{L}_2(D/\alpha,\beta)\pi(\alpha,\beta)d\alpha d\beta$ Prior distributions satisfy $\int \pi(\theta)d\theta = 1$; $\int \pi(\alpha,\beta)d\alpha d\beta = 1$

Lower evidence \Rightarrow More probable : Jeffrey's scale



~ 26% models are most probable. J.Martin et.al., JCAP:2014 + Bayesian complexity \Rightarrow ~ 9%. Preferred potential: pleatue type. But it all depends on how reliable Bayesian evidence calculation is!

Have we "seen" inflation in the sky?

No!!

... but of course we are zeroing in!

Have we "seen" inflation in the sky?

No!!

... but of course we are zeroing in!

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ● ● ● ●

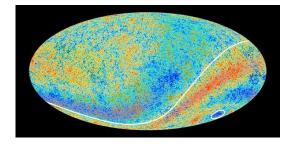
The point is not to pocket the truth but to chase it - Elio Vittorini

Large scale anomalies

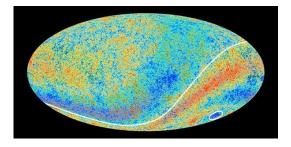
◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ● ● ● ●

- Lensing
- Non-Gaussianity

Large scale anomalies



Large scale anomalies



- Modifications to inflation? (Carroll, PRD:2008)
- Earlier universe preceding Big Bang? (Efstathiou,)
- Undiscovered source in solar system? (Yoho, PRD:2011)

A nice review by Huterer, 1004.5602

Lensing

Effects of lensing

• Broadening of peaks

• Non-Gaussianity

Lensing

Effects of lensing

- Broadening of peaks
- Non-Gaussianity

Why delensing?

- Better estimate of parameters
- B-modes: can remove degenarcy

Lensing

Effects of lensing

- Broadening of peaks
- Non-Gaussianity

Why delensing?

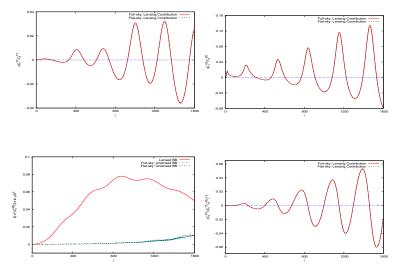
- Better estimate of parameters
- B-modes: can remove degenarcy

To do

- Propose delensing techniques
- Wait for Planck polorization & CMBPol data

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Delensing using matrix inversion technique Pal, Padmanabhan, SP, MNRAS:2014



Fractional difference between lensed and unlensed power spectra E Sace

Perturbations mostly Gaussian, described by 2-point correlation fn. If (small) non-Gaussianities are present \longrightarrow reflected via B modes 3- and 4-point correlation fn. \Rightarrow bispectrum f_{NL} & trispectrum g_{NL}, τ_{NL}

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Perturbations mostly Gaussian, described by 2-point correlation fn. If (small) non-Gaussianities are present \longrightarrow reflected via B modes 3- and 4-point correlation fn. \Rightarrow bispectrum f_{NL} & trispectrum g_{NL} , τ_{NL} Why important?

- Maldacena limit \Rightarrow single field ($|f_{NL}| < 1$) vs multifield ($|f_{NL}| > 5$)
- $\blacksquare B modes = GW + NG + lensing \Rightarrow Need to separate out NG for correct estimate of GW$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suyama-Yamaguchi consistency relation between f_{NL} & τ_{NL}