A non-canonical scalar field model of Dark Energy

Sudipta Das

Visva-Bharati, Santiniketan

Saha Theory Workshop: Cosmology at the Interface,

$$
\text { 29th January, } 2015
$$

Plan of the talk

- Motivation
- Non-canonical scalar field model
- Brief description of the model
- Dynamical system study
- Results

Motivation

- The universe is accelerating at present.
- Cause of acceleration \Rightarrow Repulsive anti-gravity effect
- In FRW background, the dynamics of the Universe is described by

$$
\begin{equation*}
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \Pi G T_{\mu \nu} \tag{1}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 p) \tag{2}
\end{equation*}
$$

Motivation

- Logically there are two possible ways to explain the current acceleration!

1. Modification of the geometry part of the Einstein's equations.
2. Inclusion of Dark Energy: An unknown form of energy that provides the repulsive force.
We shall concentrate on the second
 possibility.

Scalar field models :

- The most general form of Lagrangian for a scalar field model is:

$$
\begin{equation*}
\mathcal{L}=f(\phi) F(X)-V(\phi), \quad X=\frac{1}{2} \dot{\phi}^{2} \tag{3}
\end{equation*}
$$

- $V(\phi)=0 \Rightarrow$ k-essence.
- $f(\phi)=$ constant and $F(X)=X \Rightarrow$ quintessence.
- For a quintessence model, the field equations are:

$$
\begin{gather*}
3 H^{2}=\rho_{m}+\frac{1}{2} \dot{\phi}^{2}+V(\phi) \tag{4}\\
2 \dot{H}+3 H^{2}=-\frac{1}{2} \dot{\phi}^{2}+V(\phi) \tag{5}
\end{gather*}
$$

Noncanonical scalar field models :

- For non-canonical scalar field models :
$f(\phi)=$ constant and $\mathrm{F}(\mathrm{X}) \Rightarrow$ nonlinear function of X.
- Also the conservation equation for the scalar field is:

$$
\begin{align*}
& \ddot{\phi}\left[\left(\frac{\partial \mathcal{L}}{\partial X}\right)+(2 X)\left(\frac{\partial^{2} \mathcal{L}}{\partial X^{2}}\right)\right] \\
& +\left[3 H\left(\frac{\partial \mathcal{L}}{\partial X}\right)+\dot{\phi}\left(\frac{\partial^{2} \mathcal{L}}{\partial X \partial \phi}\right)\right] \dot{\phi}-\left(\frac{\partial \mathcal{L}}{\partial \phi}\right)=0 \tag{6}
\end{align*}
$$

A Toy model:

- For the present toy model, we choose $F(X)=X^{2}$.
- Einstein's field equations take the form

$$
\begin{gathered}
3 H^{2}=\rho_{m}+\frac{3}{4} \dot{\phi}^{4}+V(\phi) \\
2 \dot{H}+3 H^{2}=-\frac{1}{4} \dot{\phi}^{4}+V(\phi)
\end{gathered}
$$

$$
\dot{\rho}_{\phi}+3 H\left(1+\omega_{\phi}\right) \rho_{\phi}=0
$$

$$
\dot{\rho}_{m}+3 H \rho_{m}=0
$$

Interacting scenario :

- For the present toy model, we choose $F(X)=X^{2}$.
- Einstein's field equations take the form

$$
\begin{array}{r}
3 H^{2}=\rho_{m}+\frac{\frac{3}{4} \dot{\phi}^{4}+V(\phi)}{\rightarrow-\rho_{\phi}} \\
2 \dot{H}+3 H^{2}=-\frac{1}{4} \dot{\phi}^{4}+V(\phi) \\
\dot{\rho}_{\phi}+3 H\left(1+\omega_{\phi}\right) \rho_{\phi}=Q=\alpha H \dot{\phi}^{4} \\
\dot{\rho}_{m}+3 H \rho_{m}=-Q=-\alpha H \dot{\phi}^{4}
\end{array}
$$

Toy Model

- We made the following ansatz to close the system of equations.

$$
\begin{equation*}
\omega_{\phi}=\frac{p_{\phi}}{\rho_{\phi}}=\frac{X^{2}-V}{3 X^{2}+V}=\omega(\text { a constant }) \tag{7}
\end{equation*}
$$

- At present $\omega_{\phi} \simeq-1$ and $\ddot{a}>0 \Rightarrow-1<\omega_{\phi}<-\frac{1}{3}$
- This gives

$$
\begin{equation*}
X^{2}=\frac{1+\omega}{1-3 \omega} V \quad \Rightarrow \dot{\phi}^{4}=4\left(\frac{1+\omega}{1-3 \omega}\right) V(\phi) \tag{8}
\end{equation*}
$$

Toy Model

- Finally one gets

$$
\begin{aligned}
& \frac{d V(a)}{d a} \dot{a}+\epsilon \frac{\dot{a}}{a} V(a)=0 \\
\Rightarrow & V(a)=V_{0} a^{-\epsilon}
\end{aligned}
$$

and

$$
H^{2}=\gamma a^{-\epsilon}+B a^{-3}
$$

- $\epsilon=(3-\alpha)(1+\omega)$
- $\gamma=\frac{4 \omega V_{0}}{(3-\epsilon)(3 \omega-1)}$

Dynamical system study

- We rewrite the equations as plane autonomous system
- We define three new variables:

$$
x=\frac{\dot{\phi}^{2}}{2 H}, y=\frac{\sqrt{V}}{\sqrt{3} H} \text { and } \lambda=-\frac{1}{\phi V} \frac{d V}{d \phi} .
$$

- The evolution equations for the scalar field are :

$$
\begin{gathered}
x^{\prime}=-W x+\frac{3}{2} x\left(1+\frac{x^{2}}{3}-y^{2}\right)+\lambda y^{2} \\
y^{\prime}=\frac{3}{2} y\left(1+\frac{x^{2}}{3}-y^{2}\right)-\lambda x y
\end{gathered}
$$

- with

$$
\Omega_{\phi}=\frac{\rho_{\phi}}{3 H^{2}}=x^{2}+y^{2}
$$

and

$$
\omega_{t o t}=\frac{p_{\phi}}{\rho_{m}+\rho_{\phi}}=\frac{x^{2}}{3}-y^{2}
$$

	x^{*}	y^{*}	Nature of eigenvalues	Stability?	$\omega_{\text {tot }}^{*}$	Acceleration?
i	0	0	real, unequal and opposite signs	Saddle point	0	No
ii	$\sqrt{2 W-3}$	0	real, unequal and positive	Unstable node	3.88	No
iii	$-\sqrt{2 W-3}$	0	real, unequal and positive	Unstable node	3.88	No
iv	b_{+}	$\frac{p}{2 \sqrt{2 \lambda}}$	real, unequal and opposite signs	Saddle point	2.87	No
v	b_{+}	$-\frac{p}{2 \sqrt{2 \lambda}}$	real, unequal and opposite signs	Saddle point	2.87	No
vi	b_{-}	$\frac{q_{1}}{\sqrt{2 \lambda}}$	real, unequal and negative	Stable node	-0.898	Yes
vii	b_{-}	$-\frac{q_{1}}{\sqrt{2 \lambda}}$	real, unequal and negative	Stable node	-0.898	Yes

Table: The properties of the critical points. This is for $\lambda=1, \epsilon=1.1$ and $\omega_{\phi}=-0.9$. Here, $\alpha=3-\frac{\epsilon}{1+\omega_{\phi}}=-8.0$ and $W=\frac{2}{3}(3-\alpha)=7.33$.
$-b_{ \pm}=\frac{\left(3 W+2 \lambda^{2}\right)}{8 \lambda} \pm \frac{\sqrt{-48 \lambda^{2}+\left(3 W+2 \lambda^{2}\right)^{2}}}{8 \lambda}$

- For (vi) and (vii),

$\Omega_{\phi} \sim 0.9169$ and

$$
\Omega_{m} \sim 0.0831, q=-1+\frac{3}{2}\left[1+\frac{x^{2}}{3}-y^{2}\right]=-0.84 .
$$

Results

- Phase portrait for the system

Results

- Evolution of (i) x and y and (ii) q and ω_{ϕ} against N for
$\lambda=1.0,1.5,2.0, \epsilon=1.1$ and
$\omega_{\phi}=-0.9$
- The universe enters into an
 accelerated phase in the recent past
- ω_{ϕ} was positive initially, close to -0.9 now and settles to a value -1 in future
- The present model will behave like a Λ CDM model in future

Drawbacks / Future scope

- $\omega_{\phi}=$ constant !!
- $Q=\alpha H \dot{\phi}^{4} ? ?$
- $\lambda=-\frac{1}{\phi V} \frac{d V}{d \phi}$

Thank You

