## Quintessence and D3-Brane/Anti-brane Universe

Saha Theory Workshop: Cosmology at the Interface 28-30 January 2015
K. Priyabrat Pandey (University of Delhi, Delhi)

Based on: European Physical Journal C 74 (2014) 3173. ( With: Abhishek K. Singh, Sunita Singh and Supriya Kar)

Motivation:

- Brane-anti brane pair formation at cosmological horizon
- An accelerated expanding universe in the cosmology
$\Longrightarrow$ a growth in extra dimension


## Overview

(1) Quintessence
(2) String-brane model
$\rightarrow$ Geometric torsion
$\rightarrow$ Gravitational (3̄̄)-brane
$\rightarrow$ Torsion curvature
$\rightarrow$ Irreducible curvature scalar $\mathcal{K}$
(0) Resulting geometries
(1) Outcomes

## Quintessence:

- Accelerated cosmic expansion.

$$
\text { (A.G. Riess et al. Astron.J. } 116 \text { (1998)) }
$$

- Friedmann equation: $\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 P)$ Equation of state:

$$
\omega=\frac{p}{\rho}
$$

$$
\text { for } \quad \ddot{a}>0 \Rightarrow \omega<-\frac{1}{3}
$$

- Cosmological observation $\Rightarrow-1<\omega<\frac{-1}{3}$
- Negative pressure and variable energy density
- The presence of repulsive gravity called dark energy
- Quintessence is one of the candidate for dark energy
- Quintessence $\longrightarrow$ apparently fifth hidden fundamental force
$\longrightarrow$ described by dynamical scalar field
$\longrightarrow$ scalar field because of minimal coupling


## String-brane model

JHEP 05 (2013) 033; Phys.Rev.D 88 (2013) 066001 ; Nucl.Phys.B 879 (2014) 216; Int.J.Mod.Phys.A 29 (2014) 1450164
(A.K. Singh, S. Singh, S. Kar and KPP)

- Consider the non-linear $U(1)$ dynamics with a background $G_{\mu \nu}^{(N S)}$
- Poincare dual $\mathcal{F}_{\mu \nu} \rightarrow H_{\mu \nu \lambda}$
$\Longrightarrow$ Dynamics of Kalb- Rammond field on $D_{4}$-brane.

$$
S=-T_{D_{4}} \int d^{5} \times \sqrt{-G^{(N S)}} H_{\mu \nu \lambda} H^{\mu \nu \lambda} .
$$

- Where $G^{N S}{ }_{\mu \nu}=\left(g_{\mu \nu}-B_{\mu \lambda}^{(N S)} g^{\lambda \rho} B_{\rho \nu}^{(N S)}\right)$
( Seiberg and Witten; JHEP (1999) )
- Equation of motion is

$$
\partial_{\lambda} H^{\lambda \mu \nu}+\frac{1}{2} G_{(N S)}^{\alpha \beta} \partial_{\lambda} G_{\alpha \beta}^{(N S)} H^{\lambda \mu \nu}=0 .
$$

## Geometric torsion

- Generically $\mathcal{D}_{\lambda}$ absorbs $H_{3}$ and may be defined as:

$$
\begin{aligned}
& {\overline{\mathcal{D}} \lambda_{\lambda} \hat{B}_{\mu \nu}=\nabla_{\lambda} \hat{B}_{\mu \nu}+\frac{1}{2} H_{\lambda \mu}{ }^{\rho} \hat{B}_{\rho \nu}-\frac{1}{2} H_{\lambda \nu}{ }^{\rho} \hat{B}_{\rho \mu}, ~}_{\text {and }} \\
& \Longrightarrow \mathcal{H}_{\mu \nu \lambda}=\mathcal{D}_{\mu} \hat{B}_{\nu \lambda}+\operatorname{cyclic} \text { in }(\mu, \nu, \lambda) \\
& =H_{\mu \nu \lambda}+\left(H_{\mu \nu \alpha} \hat{B}_{\lambda}^{\alpha}+\text { cyclic }\right)+H_{\mu \nu \beta} \hat{B}_{\alpha}^{\beta} \hat{B}_{\lambda}^{\alpha}+\ldots
\end{aligned}
$$

- However for a constant NS two form: $\nabla_{\mu} B_{\nu \lambda}^{N S}=0$ $\mathcal{D}_{\lambda} B_{\mu \nu}^{N S}=\frac{1}{2} H_{\lambda \mu}{ }^{\rho} B_{\rho \nu}^{N S}-\frac{1}{2} H_{\lambda \nu}{ }^{\rho} B_{\rho \mu}^{N S}$
$\mathcal{H}_{\mu \nu \lambda}=\left(H_{\mu \nu \alpha} B^{(N S) \alpha}{ }_{\lambda}+\right.$ cyclic $)+H_{\mu \nu \beta} B^{(N S) \beta}{ }_{\alpha} B^{(N S) \alpha}{ }_{\lambda}+\ldots$
$\Longrightarrow B_{2}^{(N S)}$ (couples to $H_{3}$ ) defines a Geometric Torsion: $\mathcal{H}_{3}$
- $\mathcal{H}_{3}$ is described by a dynamical $B_{2}^{(N S)}$ in the frame-work
- The gauge invariance of $\mathcal{H}_{3}^{2}$ is achieved with a notion of metric

$$
f_{\mu \nu}=C \mathcal{H}_{\mu \lambda \rho} \overline{\mathcal{H}}^{\lambda \rho}{ }_{\nu} .
$$

- The stringy (geometric torsion) correction modifies the metric:

$$
\begin{aligned}
G_{\mu \nu} & =G_{\mu \nu}^{(N S)}+f_{\mu \nu} \\
& =\left(g_{\mu \nu}-B_{\mu \lambda}^{(N S)} B_{\nu}^{(N S) \lambda}+C \overline{\mathcal{H}}_{\mu \lambda \rho} \mathcal{H}^{\lambda \rho}{ }_{\nu}\right)
\end{aligned}
$$

- $\mathcal{H}_{3} \Rightarrow$ a gravitational pair of ( $3 \overline{3}$ )-brane by $B_{2}$ on $D_{4}$-brane
- Schwinger Mechanism: $A_{\mu} \xrightarrow{\text { vacuum }}$ particle + anti-particle
- Hawking Radiation : $A_{\mu} \xrightarrow{\text { black hole horizon }}$ particle + anti-particle Hawking; CMP (1975)


## Gravitational ( $3 \overline{3}$ )-brane

- Since a two form quanta is explored to produce a pair in $U(1)$ $\Longrightarrow$ Stringy (not fundamental) quantum gravity effects
- A pair is created across a (cosmological) horizon
$\Longrightarrow$ They cannot annhiliate each other
- They move in opposite directions
$\Longrightarrow$ An extra fifth (transverse) dimension in between
- The extra dimension is hidden to the 3 -brane and $\overline{3}$-brane universes $\Longrightarrow$ Significance of closed string modes in the scenario
- Vacuum created 3-brane $\longrightarrow$ a gravitational 3-brane vacuum $\Longrightarrow$ (Low energy) Type IIA on $S^{1}+$ BPS $D_{3}$-brane


## Torsion curvature

- Commutators of the covariant derivative on a $D_{4}$-brane:
(i) on a scalar field:

$$
\left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right] \phi=\mathcal{H}_{\mu \nu}{ }^{\lambda} \partial_{\lambda} \phi
$$

$\Rightarrow$ Nontrivial curvature even with a linear $\phi(x) \rightarrow$ Quintessence!
(ii) on a gauge field:

$$
\left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right] A_{\lambda}=\mathcal{K}_{\mu \nu \lambda}{ }^{\rho} A_{\rho}
$$

Where $\mathcal{K}_{\mu \nu \lambda}{ }^{\rho} \equiv \partial_{\mu} \mathcal{H}_{\nu \lambda}{ }^{\rho}-\partial_{\nu} \mathcal{H}_{\mu \lambda}{ }^{\rho}+\mathcal{H}_{\mu \lambda}{ }^{\sigma} \mathcal{H}_{\nu \sigma}{ }^{\rho}-\mathcal{H}_{\nu \lambda}{ }^{\sigma} \mathcal{H}_{\mu \sigma}{ }^{\rho}$

- For a non propagating torsion: $\mathcal{K}_{\mu \nu \lambda \rho} \rightarrow R_{\mu \nu \lambda \rho}$
$\longrightarrow$ Riemannian (Einstein vacuum)
$\Longrightarrow$ D-brane world volume correction becomes insignificant

Irreducible curvature scalar $\mathcal{K}$

$$
\begin{aligned}
& \quad 4 \mathcal{K}_{\mu \nu}=-\left(2 \partial_{\lambda} \mathcal{H}^{\lambda}{ }_{\mu \nu}+\mathcal{H}_{\mu \rho}{ }^{\lambda} \mathcal{H}_{\lambda \nu}{ }^{\rho}\right) \\
& \text { and } \quad \mathcal{K}=-\frac{1}{4} \mathcal{H}_{\mu \nu \lambda} \mathcal{H}^{\mu \nu \lambda}
\end{aligned}
$$

- Geometric torsion dynamics on a gravitational pair of $3 \overline{3}$-brane

$$
S_{3-\overline{3}}=\frac{1}{3 C_{2}^{2}} \int d^{5} \times \sqrt{-G^{(N S)}} \mathcal{K}^{(5)}
$$

- Extra dimension between the brane/anti-brane $\Longrightarrow \mathcal{K}^{5}$ on $S^{1}$

$$
\begin{gathered}
S_{3-\overline{3}}=\frac{1}{3 C^{2}} \int_{\overline{3} b} d^{4} x \sqrt{-G^{(N S)}} \mathcal{K}-\frac{1}{4} \int_{3 b} d^{4} x \sqrt{-G^{(N S)}} \overline{\mathcal{F}}_{\mu \nu} \mathcal{F}^{\mu \nu} \\
\text { where } \quad \overline{\mathcal{F}}_{\mu \nu}=\left(2 \pi \alpha^{\prime}\right)\left(F_{\mu \nu}+\mathcal{H}_{\mu \nu}^{\lambda} \mathcal{A}_{\lambda}\right)
\end{gathered}
$$

- In a low energy limit, i .e. for a large 5th dimension $\mathcal{F}_{\mu \nu} \rightarrow F_{\mu \nu}$
- The Poincare dual of $\mathcal{K}$ i.e. an axion, on an $\overline{3}$-brane $\Longrightarrow$ a quintessence in the frame-work
- Two form on $S^{1} \Rightarrow$ does not generate a dilaton
- The energy-momentum tensor is computed in a gauge choice,

$$
\left(2 \pi \alpha^{\prime}\right)^{2} T_{\mu \nu}=\left(G_{\mu \nu}^{(N S)}+\tilde{C} \overline{\mathcal{F}}_{\mu \lambda} \overline{\mathcal{F}}_{\nu}^{\lambda}+C \overline{\mathcal{H}}_{\mu \lambda \rho} \mathcal{H}_{\nu \rho}^{\lambda \rho}\right)
$$

$\Longrightarrow$ With $\left(C=\frac{3}{4}, \tilde{C}=\frac{3}{2}\right)$ and $\left(C=-\frac{5}{4}, \tilde{C}=-\frac{1}{2}\right)$

$$
G_{\mu \nu}=\left(G_{\mu \nu}^{(N S)} \pm \overline{\mathcal{F}}_{\mu \lambda} \overline{\mathcal{F}}^{\lambda}{ }_{\nu} \pm \overline{\mathcal{H}}_{\mu \lambda \rho} \mathcal{H}_{\nu \rho}^{\lambda \rho}\right)
$$

- Equation of motion for gauge torsion in four dimension:

$$
\partial_{\lambda} H^{\lambda \mu \nu}+\frac{1}{2}\left(g^{\alpha \beta} \partial_{\lambda} g_{\alpha \beta}\right) H^{\lambda \mu \nu}=0
$$

- Non-linear gauge field equation of motion is

$$
\begin{gathered}
\mathcal{D}_{\mu} \mathcal{F}^{\mu \nu}=0 \\
\text { or, } \quad \partial_{\mu} \mathcal{F}^{\mu \nu}+\frac{1}{2}\left(\mathrm{~g}^{\alpha \beta} \partial_{\mu} \mathrm{g}_{\alpha \beta}\right) \mathcal{F}^{\mu \nu}-\frac{1}{2} \mathcal{H}_{\mu \alpha}^{\nu} \mathcal{F}^{\mu \alpha}=0
\end{gathered}
$$

## Resulting geometries

- Ansatz: $B_{t \theta}=B_{r \theta}=b$ and $B_{t \phi}=-M^{2} \cos \theta$ $\mathcal{H}_{t \theta \phi} \rightarrow H_{t \theta \phi}=-M^{2} \sin \theta$ and $\mathcal{H}_{t r \phi}=\frac{M^{2} b}{r^{2}} \sin \theta$

$$
G_{\mu \nu}=\left(g_{\mu \nu}+B_{\mu \lambda} g^{\lambda \rho} B_{\rho \nu}+C \overline{\mathcal{H}}_{\mu \lambda \rho} g^{\lambda \alpha} g^{\rho \beta} \overline{\mathcal{H}}_{\alpha \beta \nu}\right)
$$

- For $C= \pm 1 / 2, r^{4} \gg b^{4}$ and $r^{8} \gg M^{8}$ on $(3 \overline{3})$

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{b^{2}}{r^{2}} \mp \frac{M^{4}}{r^{4}} \pm \frac{M^{4} b^{2}}{r^{6}}\right) d t^{2} \\
& +\left(1-\frac{b^{2}}{r^{2}} \mp \frac{M^{4}}{r^{4}} \pm \frac{M^{4} b^{2}}{r^{6}}\right)^{-1} d r^{2} \\
& +r^{2} d \theta^{2}+\left(1 \mp \frac{M^{4} b^{2}}{r^{6}}\right) r^{2} \sin ^{2} \theta d \phi^{2}
\end{aligned}
$$

- For $\mathrm{C}=1 / 2$ and vanishing geometric torsion term

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{b^{2}}{r^{2}}+\frac{M^{4}}{r^{4}}\right) d t^{2}+\left(1-\frac{b^{2}}{r^{2}}+\frac{M^{4}}{r^{4}}\right)^{-1} d r^{2} \\
& +r^{2} d \Omega^{2}
\end{aligned}
$$

- The torsion modes decouple with a large fifth dimension.
- The decoupling of non-perturbative quantum effects may lead to describe Einstein vacuum in the frame-work
- Under Weyl scaling
- Matrix projection
- For $M<r<b$
- On (3̄̄)

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{r^{2}}{b^{2}} \mp \frac{N^{2}}{r^{2}} \pm \frac{M^{4}}{r^{4}}\right) d t^{2}+\frac{r^{4}}{b^{2}} d \Omega^{2} \\
& +\left(1-\frac{r^{2}}{b^{2}} \mp \frac{N^{2}}{r^{2}} \pm \frac{M^{4}}{r^{4}}\right)^{-1} d r^{2} \mp \frac{M^{4}}{r^{2}} \sin ^{2} \theta d \phi^{2} \\
& \pm \frac{N^{2}}{r^{2}} d s_{\text {flat }}^{2}
\end{aligned}
$$

- It can be rexpressed in terms of renormalized mass $N_{\text {eff }}$ as:

$$
\begin{aligned}
& d s^{2}=-\left(1-\frac{r^{2}}{b^{2}}+\frac{N_{\mathrm{eff}}^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{r^{2}}{b^{2}}+\frac{N_{\mathrm{eff}}^{2}}{r^{2}}\right)^{-1} d r^{2} \\
&+\frac{r^{4}}{b^{2}} d \theta^{2}+\left(\frac{r^{2}}{b^{2}}-\frac{M^{4}}{r^{4}}\right) r^{2} \sin ^{2} \theta \\
& \text { where } \quad N_{\text {eff }}^{2}=N^{2}\left(\frac{b^{2}}{r_{e}^{2}}-1\right)
\end{aligned}
$$

- It is 4 dimensional TdS black hole in presence of extra dimension in Einstein vacuum
$\rightarrow$ propagating torsion ensures non-Riemannian geometry
$\rightarrow$ scalar curvature

$$
R=\frac{F(M, b, \theta)}{b^{2} r^{6}\left(b^{2} M^{4}-r^{6}\right)}
$$

$\rightarrow$ curvature singularities at $r \rightarrow 0$ and at $r \rightarrow\left(b M^{2}\right)^{1 / 3} \rightarrow$ scalar curvature is sourced by geometric torsion.

$$
R \rightarrow \mathcal{K}=\frac{M^{4}}{2 r^{4}}\left(1+\frac{b^{2}}{r^{2}}\right)
$$

- since $M<r<b, r \rightarrow 0$ is not accessible to observation.
- The gravitational repulsion that prevents the formation of singularities in the vacuum created brane/anti-brane
- Similarly can be expressed in terms of renormalised mass $N_{\text {eff }}$

$$
\begin{align*}
d s^{2}= & -\left(1-\frac{r^{2}}{b^{2}}-\frac{N_{\mathrm{eff}}^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{r^{2}}{b^{2}}-\frac{N_{\mathrm{eff}}^{2}}{r^{2}}\right)^{-1} d r^{2} \\
& +\frac{r^{4}}{b^{2}} d \theta^{2}+\left(\frac{r^{2}}{b^{2}}+\frac{M^{4}}{r^{4}}\right) r^{2} \sin ^{2} \theta d \phi^{2} \tag{1}
\end{align*}
$$

- It is SdS geometry sourced by geometric torsion.
- Curvature singularity is absent at brane regime,
- two horizons:

$$
r_{c} \approx b\left(1-\frac{N_{\mathrm{eff}}^{2}}{2 b^{2}}\right) \quad \text { and } \quad r_{e} \approx N_{\mathrm{eff}}
$$

- In low energy limit torsion contribution becomes insignificant $\rightarrow$ TdS and SdS approximated by Riemannian curvature. $\rightarrow$ spherical symmetry is restored.

$$
\begin{aligned}
& d s^{2}=-\left(1-\frac{r^{2}}{b^{2}}-\frac{N^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{r^{2}}{b^{2}}-\frac{N^{2}}{r^{2}}\right)^{-1} d r^{2}+\frac{r^{4}}{b^{2}} d \Omega^{2} \\
& d s^{2}=-\left(1-\frac{r^{2}}{b^{2}}+\frac{N^{2}}{r^{2}}\right) d t^{2}+\left(1-\frac{r^{2}}{b^{2}}+\frac{N^{2}}{r^{2}}\right)^{-1} d r^{2}+\frac{r^{4}}{b^{2}} d \Omega^{2}
\end{aligned}
$$

- The emergent geometries in a low energy limit correspond to classical vacua presumably in Einstein gravity
- It is worked out for a SdS black hole and is given by

$$
R=\frac{20}{b^{2}}+\frac{6 N^{2}}{r^{4}}+\frac{2\left(b^{2}-r^{2}\right)}{b^{2} r^{4}}\left(b^{2}-7 r^{2}\right)
$$

- The curvature singularity at $r \rightarrow 0$ is forbidden by the black hole mass $N$ in the brane window.


## Outcomes:

- Investigated geometric torsion dynamics underlying a $D_{4}$-brane
- KR two form can generate a gravitational pair of (3̄̄)-brane
- The Poincare dual of $\mathcal{K}$ i.e. an axion, on an $\overline{3}$-brane $\Longrightarrow$ a quintessence in the frame-work
- Its dynamics on influences the effective 3 -brane universe $\Longrightarrow$ through the hidden fifth dimension
- It describe various effective de Sitter quantum geometries

