Predictions & speculations related to $b \to c \, au ar{ u}$

Zoltan Ligeti

See: Freytsis, ZL, Ruderman, to appear

Naturalness @ Weizmann, November 13, 2014

Snapshot of flavor physics

- The level of agreement between the measurements is often misinterpreted
- Much larger allowed region if SM not assumed to hold, more parameters
- $\mathcal{O}(20\%)$ NP contributions to most FCNC (loop dominated) processes are still allowed

• Future: $\frac{\text{(LHCb upgrade)}}{\text{(LHCb } 1\, fb^{-1})} \sim \frac{\text{(Belle II data set)}}{\text{(Belle data set)}} \sim \frac{\text{(BaBar data set)}}{\text{(CLEO data set)}} \sim 50$

Last 15 yrs: verify Kobayashi–Maskawa mechanism — Next 15 yrs: discover/study BSM signals?

• Increase in sensitivity to higher scales $\sqrt[4]{50} \sim 2.5$, similar to LHC8 \rightarrow LHC14 Expect "unpredictable" progress, too — data usually motivate people to think hard...

The b o c auar
u data

The $B o D^{(*)} au ar{ u}$ measurements

BaBar reported 3.4σ deviation from SM in the ratios: $R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X \ell \bar{\nu})}$

	Belle	BABAR	SM
R(D)	0.430 ± 0.091	$0.440 \pm 0.058 \pm 0.042$	0.297 ± 0.017
$R(D^*)$	0.405 ± 0.047	$0.332 \pm 0.024 \pm 0.018$	0.252 ± 0.003
correlation	neglected	-0.27	-

[Watanabe, FPCP 2014 — BaBar 1205.5442 + Belle private combination]

Public Belle result not yet available with full data, correlation neglected
 Combined significance would only be larger

[Naive combination, without correlations: R(D): 2.4σ , $R(D^*)$: 3.8σ , $R(D^{(*)})$: 4.8σ]

SM predictions fairly robust: heavy quark symmetry + lattice QCD

BaBar statements on BSM models

lacktriangle BaBar studied consistency of rates with 2HDM, and ${
m d}\Gamma/{
m d}q^2$ with several models

[PRL 109 (2012) 101802, arXiv:1205.5442]

[PRD 88 (2013) 072012, arXiv:1303.0571]

• Found that type-II 2HDM gave nearly as bad fit to the data as the SM ${
m d}\Gamma/{
m d}q^2$ clearly has additional discriminating power

Reasons (not) to take the tension seriously

- ullet B factory measurements with au leptons are difficult
- Need a large tree-level contribution, SM suppression only by m_{τ} NP expected to show up in FCNCs need fairly light NP here to fit the data
- Severe constraints on actual models from flavor physics, and from LHC
- Results from BaBar and Belle indicate consistent signal
- Even when BaBar and Belle disagreed in the past, averages often proved robust
- If Nature were as most theorist imagined (until a few years ago), then the LHC (Tevatron, LEP, DM searches) should have already discovered new physics

Tension with SM is model independent

- Use an OPE-based analysis to constrain SM allowed range as much as possible
- Learn more from inclusive = \sum exclusive

$$\mathcal{B}(B^- o X_c \ell \bar{
u}) = (10.92 \pm 0.16)\%$$
 and $R(X_c) = 0.222 \pm 0.003$ [hep-ph/9401226, hep-ph/9811239]
 $\Rightarrow \mathcal{B}(B^- o X_c \tau \bar{
u}) = (2.42 \pm 0.05)\%$

LEP average: $\mathcal{B}(b \to X\tau^+\nu) = (2.41 \pm 0.23)\%$ [experimental concerns...]

• The $R(D^{(*)})$ data imply:

$$\mathcal{B}(\bar{B} \to D^* \tau \bar{\nu}) + \mathcal{B}(\bar{B} \to D \tau \bar{\nu}) = (2.78 \pm 0.25)\%$$

- Estimate $\mathcal{B}(B \to D^{**}\tau\bar{\nu}) \gtrsim 0.2\%$ in the SM (the four 1P states)
- Thus, tension $\geq 2\sigma$, independent of SM calculation of $R(D^{(*)})$
- Belle II: Expect reduction of uncertainties by factor 8-10

Past tension in B o auar u decay

• Until 2012 there was a $\sim 2.5\sigma$ tension between $\mathcal{B}(B \to \tau \bar{\nu})$ and the CKM fit

(Or, assuming the SM, $\mathcal{B}(B \to \tau \bar{\nu})$ gave too large $|V_{ub}|$)

Precision $B o X_c au ar{ u}$ predictions

• No measurements since LEP, Belle analysis in progress (No theory work in $\sim 15 \, \mathrm{yrs}$) Papers in '90s used pole mass, did not study spectra (experimentally needed) and uncertainties

$B o X_u auar u$ predictions

• Large interest in Belle II to study all decay modes with τ -s

If LEP could measure $B\to X_c\tau\bar{\nu}$ with a few $\times 10^6~B-\overline{B}$ pairs, surely Belle II can measure $B\to X_u\tau\bar{\nu}$ with $5\times 10^{10}~B-\overline{B}$ pairs...

- Suppression of τ mode smaller in $b \to u$: $\Gamma(B \to X_u \ell \bar{\nu})/\Gamma(B \to X_u \tau \bar{\nu}) \simeq 3.0$ $\Gamma(B \to X_c \ell \bar{\nu})/\Gamma(B \to X_c \tau \bar{\nu}) \simeq 4.5$
- The inclusive calculation is unavailable for any distribution (except for total rate)

Calculated rates, figuring out subtleties with shape function... [ZL & Tackmann, to appear]

Tensions in $|V_{ub}|$ determinations

ullet $\sim 3\,\sigma$ tension among $|V_{ub}|$ measurements

Tim Gershon @ FPCP 2014: "Understanding this will involve a great deal of effort, but is essential for continued progress in the field"

- Too early to conclude:
 - Inclusive determination can improve
 - Exclusive measured better with full reco
 - Lattice QCD results will improve
- A BSM possibility:

$$\mathcal{L} = -\frac{4G_F}{\sqrt{2}} V_{ub}^L \left(\bar{u} \gamma_{\mu} P_L b + \epsilon_R \, \bar{u} \gamma_{\mu} P_R b \right) \left(\bar{\nu}_{\ell} \gamma^{\mu} P_L \ell \right)$$

Can we construct observables which give "more vertical" constraints?

[Bernlochner, ZL, Turczyk, 1408.2516]

Decay	$ V_{ub} \times 10^4$	adm.
$B \to \pi \ell \bar{\nu}_{\ell}$	3.23 ± 0.30	$(1+\epsilon_R)$
$B \to X_u \ell \bar{\nu}_{\ell}$	4.39 ± 0.21	$\sqrt{1+\epsilon_R^2}$
$B \to \tau \bar{\nu}_{\tau}$	4.32 ± 0.42	$(1-\epsilon_R)$

• NB: Cleanest $|V_{ub}|$ I know, only isospin, $\mathcal{B}(B_u \to \ell \bar{\nu})/\mathcal{B}(B_d \to \mu^+ \mu^-)$ — run LHCb @ 33 TeV

Operator analysis

Four-fermion operators

Parametrize new physics:

$${\cal H} = rac{4G_F}{\sqrt{2}} \, V_{cb} \, {\cal O}_{V_L} + rac{1}{\Lambda^2} \sum_i C_i^{(\prime,\prime\prime)} \, {\cal O}_i^{(\prime,\prime\prime)}$$

Consider redundant operators with different fermion ordering — simplifies understanding the mediators (which are integrated out)

Need substantial correction to SM tree-level process ⇒ forget about NP in loops

• Each ordering is convenient for a particular type of mediator Simplifies fits to all possible gauge invariant operators generating $b \to c \tau \bar{\nu}$

Operators convenient to consider

Redundant set of operators, simplifies understanding of models:

52	Operator		Fierz identity	Allowed Current	$\delta \mathcal{L}_{ ext{int}}$
\mathcal{O}_{V_L}	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			$(1,3)_0$	$(g_q \bar{q}_L \boldsymbol{\tau} \gamma^{\mu} q_L + g_{\ell} \bar{\ell}_L \boldsymbol{\tau} \gamma^{\mu} \ell_L) W'_{\mu}$
\mathcal{O}_{V_R} \mathcal{O}_{S_R} \mathcal{O}_{S_L} \mathcal{O}_{T}	$(\bar{c}P_Rb)(\bar{\tau}P_L\nu)$			$(1,2)_{1/2}$	$(\lambda_d ar{q}_L d_R \phi + \lambda_u ar{q}_L u_R i au_2 \phi^\dagger + \lambda_\ell ar{\ell}_L e_R \phi)$
\mathcal{O}'_{V_L}	$(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$\mathcal{O}_{V_L}\Big\langle$	$(3,3)_{2/3}$	$\lambdaar{q}_Loldsymbol{ au}\gamma_\mu\ell_Loldsymbol{U}^\mu$
\mathcal{O}'_{V_R}	$(\bar{\tau}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$(3,1)_{2/3}$	$(\lambda \bar{q}_L \gamma_\mu \ell_L + \tilde{\lambda} \bar{d}_R \gamma_\mu e_R) U^\mu$
\mathcal{O}_{S_R}' \mathcal{O}_{S_L}' \mathcal{O}_T'	$(\bar{\tau}P_Rb)(\bar{c}P_L\nu)$ $(\bar{\tau}P_Lb)(\bar{c}P_L\nu)$ $(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow	2 2 0	$(3,2)_{7/6}$	$(\lambdaar{u}_R\ell_L+ ilde{\lambda}ar{q}_Li au_2e_R)R$
\mathcal{O}_{V_L}'' \mathcal{O}_{V_R}'' \mathcal{O}_{S_R}'' \mathcal{O}_{S_L}'' \mathcal{O}_{T}''	$(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$ $(\bar{\tau}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$ $(\bar{\tau}P_{R}c^{c})(\bar{b}^{c}P_{L}\nu)$ $(\bar{\tau}P_{L}c^{c})(\bar{b}^{c}P_{L}\nu)$ $(\bar{\tau}P_{L}c^{c})(\bar{b}^{c}P_{L}\nu)$ $(\bar{\tau}\sigma^{\mu\nu}P_{L}c^{c})(\bar{b}^{c}\sigma_{\mu\nu}P_{L}\nu)$	\longleftrightarrow \longleftrightarrow \longleftrightarrow	$-2\mathcal{O}_{S_R}$ $\frac{1}{2}\mathcal{O}_{V_L} \left\langle -\frac{1}{2}\mathcal{O}_{S_L} + \frac{1}{8}\mathcal{O}_T \right.$	$(\bar{3},2)_{5/3}$ $(\bar{3},3)_{1/3}$ $(\bar{3},1)_{1/3}$	$egin{aligned} (\lambdaar{d}_R^c\gamma_\mu\ell_L + ilde{\lambda}ar{q}_L^c\gamma_\mu e_R)V^\mu \ \lambdaar{q}_L^ci au_2oldsymbol{ au}\ell_Loldsymbol{S} \end{aligned} \ (\lambdaar{q}_L^ci au_2\ell_L + ilde{\lambda}ar{u}_R^ce_R)S \end{aligned}$

(Usually only the first 5 operators are considered)

Fits for a single operator

Fits for a single operator

We rederived everything from scratch (beware of mis-Fierzing in some papers)

Agree (up to minor typos) with "classic" paper: Goldberger [hep-ph/9902311]

Fits for two operators

Fits for two operators

Operator coefficients

$$C'_{V_L} = 0.2$$
 $C'_{V_R} = 1.2$ $C'_{V_L} = 0.2$ $C'_{V_R} = -0.02$ $C''_{S_R} = 0.27$ $C''_{S_L} = -0.27$

Future sensitivity — a rough estimate

Belle2 with 5/ab & 50/ab

Flavor symmetries for $b ightarrow c au ar{ u}$

Viable mediators

• Good fits for several mediators: scalar, "Higgs-like" $(1,2)_{1/2}$ vector, "W'-like" $(1,3)_0$ "scalar leptoquark" $(\bar{3},1)_{1/3}$ or $(\bar{3},3)_{1/3}$ "vector leptoquark" $(3,1)_{2/3}$ or $(3,3)_{2/3}$

• Surprising if only BSM operator had $(\overline{b}c)(\overline{ au}
u)$ flavor structure

Consider MFV and $U(2)^3$ models / scenarios

[Fajfer, Kamenik, Nisandzic, Zupan, 1206.1872]

- Focus on quark flavor, assume only coupling to τ This is an assumption in the MFV case, more natural in $U(2)^3$ models
- Bounds: $b \to s\nu\bar{\nu}$, D^0 & K^0 mixing, $Z \to \tau^+\tau^-$, LHC contact int., $pp \to \tau^+\tau^-$, etc.
- Enough to eliminate some scenarios

Eliminating "W'-like" and "Higgs-like" models

- ullet A vector mediator with W' quantum numbers has to be a flavor singlet to couple to both quark and lepton pairs
 - ⇒ Couplings to lighter generations cannot be suppressed
 - ⇒ Collider limits exclude such models by orders of magnitude
- ullet Similar to the W', a scalar must be a flavor singlet to have all necessary couplings
 - ⇒ Must have coupling ratios to different flavors like a (charged) Higgs
 - $\Rightarrow D \overline{D}$ mixing data excludes observed $B \to D^{(*)} \tau \bar{\nu}$ excess
- Left with models with leptoquark quantum numbers

MFV leptoquarks

Assign charges under:

$$U(3)_Q \times U(3)_u \times U(3)_d$$

Possible choices:

scalars: $S \sim (\overline{\bf 3}, {\bf 1}, {\bf 1}), ({\bf 1}, \overline{\bf 3}, {\bf 1}), ({\bf 1}, {\bf 1}, \overline{\bf 3})$

vectors: $U_{\mu} \sim (\mathbf{3}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \mathbf{3}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \mathbf{3})$

- $S(\overline{\bf 3},{f 1},{f 1})$ and $U_{\mu}({f 3},{f 1},{f 1})$ give large $pp o au^+ au^-$, excluded by Z' searches
- $S({f 1},{f ar 3},{f 1})$ and $U_{\mu}({f 1},{f 3},{f 1})$ give y_c suppressed $B o D^{(*)} au ar
 u$ contributions \Rightarrow too large couplings or too light leptoquarks
- Possibly viable: $S(\mathbf{1},\mathbf{1},\overline{\mathbf{3}})$ and $U_{\mu}(\mathbf{1},\mathbf{1},\mathbf{3})\Rightarrow$ consider in more detail Both can be electroweak singlets or triplets

The $S(1,1,\bar{3})$ Lagrangians

Interactions terms for electroweak singlet:

$$\mathcal{L} = S(\lambda Y_d^{\dagger} \bar{q}_L^c i \tau_2 \ell_L + \tilde{\lambda} Y_d^{\dagger} Y_u \bar{u}_R^c e_R)$$

$$= S_i(\lambda y_{d_i} V_{ji}^* \bar{u}_{Lj}^c e_L - \lambda y_{d_i} \bar{d}_{Li}^c \nu_L + \tilde{\lambda} y_{d_i} y_{u_j} V_{ji}^* \bar{u}_{Rj}^c e_R)$$

Integrating out S, contribution to $R(X_c)$ via: $(m_{S_3} \neq m_{S_1} = m_{S_2})$

$$-rac{V_{cb}^*}{m_{S_3}^2}\Big(\lambda^2y_b^2\,{\cal O}_{S_R}^{\prime\prime}+\lambda ilde{\lambda}y_cy_b^2\,{\cal O}_{S_L}^{\prime\prime}\Big)$$

[electroweak triplet has no $\tilde{\lambda}$ term]

• Can fit $R(D^{(*)})$ data iff $y_b = \mathcal{O}(1)$

The $U_{\mu}(1,1,3)$ Lagrangians

Interactions terms for electroweak singlet:

$$\mathcal{L} = (\lambda \, \bar{q}_L Y_d \gamma_\mu \ell_L + \tilde{\lambda} \, \bar{d}_R \gamma_\mu e_R) \, U^\mu$$
$$= (\lambda y_{d_i} V_{ji} \, \bar{u}_{Lj} \gamma_\mu \nu_L + \lambda y_{d_i} \bar{d}_{Li} \gamma_\mu \tau_L + \tilde{\lambda} \bar{d}_{Ri} \gamma_\mu \tau_R) \, U_i^\mu$$

As before, contribution to $R(X_c)$ via: $(m_{U_3} \neq m_{U_1} = m_{U_2})$

$$rac{V_{cb}}{m_{U_3}^2} \Big(\lambda^2 y_b^2 \, {\cal O}_{V_L}^\prime + \lambda ilde{\lambda} y_b \, {\cal O}_{V_R}^\prime \Big)$$

[Again, electroweak triplet has no $\tilde{\lambda}$ term]

• Can fit $R(D^{(*)})$ data iff $y_b = \mathcal{O}(1)$

[NB: vector leptoquarks are hard to make sense of as a low energy effective theory, without knowing the UV completion — divergences]

Constraints from $b o s u ar{ u}$

With three Yukawa spurion insertions, can write:

$$\lambda' S Y_d^{\dagger} Y_u Y_u^{\dagger} \, \bar{q}_L^c i \tau_2 \ell_L$$

Leads to operators of the form:

$$rac{V_{tb}^{st}V_{ts}}{2m_{S_3}^2}\,y_t^2y_b^2\,\lambda^\prime\lambda\,(ar{b}_L\gamma^\mu s_L\,ar{
u}_L\gamma_\mu
u_L)$$

• Current limits from $B \to K \nu \bar{\nu}$ require:

$$\lambda'/\lambda \lesssim 0.07$$

• A vector singlet is the only one of the four leptoquarks without such a constraint (E.g., vector triplet has $\lambda' \bar{q}_L Y_u Y_u^\dagger Y_d \boldsymbol{\tau} \gamma_\mu \ell_L \boldsymbol{U}^\mu$ term)

$U_{\mu}(1,1,3)$ — LHC constraints

- The $\tilde{\lambda}$ term for electroweak singlet vector leptoquark gives unsuppressed coupling to 1st generation
 - \Rightarrow constraints from t-channel exchange in $pp \to \tau^+ \tau^- \ \Rightarrow \ \tilde{\lambda} \lesssim 0.15 \, \lambda$
- Limits on m_{U_3} from direct leptoquark search ($b\tau$) or recasting stop ($t\nu$) searches:

Ambiguities related to possible "dipole" term: $-ig_s\kappa~U_{\mu}^{i\dagger}t_{ij}^aU_{\nu}^j~G_a^{\mu\nu}$

Find: $m_{U_3} \gtrsim 750 \, \text{GeV}$

ullet For S, CMS search for third generation scalar LQ decaying to t au gives $m_{S_3} \gtrsim 500\,{
m GeV}$ [CMS-PAS-EXO-13-010]

Additional constraints

• Main constraints from loop processes: (i) meson mixings, and (ii) electroweak precision corrections to $R(Z \to \tau^+\tau^-)$ and $A(Z \to \tau^+\tau^-)$

Scalar LQ calculable, for vector LQ need prescription for UV divergence of loops

[Jure et al. (1206.1872) dismissed scalar due to PEW constraints, we think there is marginal room]

Bounds are satisfied, although some constraints are tight

Final comments

Several possible tests & consequences

- LHC: several extensions to current searches would be interesting:
 - Searches for $t\tau$ and $b\tau$ resonances
 - Extensions of stop/sbottom searches to higher prod. cross sections ($t\nu$ and $b\nu$)
 - Searches for states appearing on-shell in t- but not in s-channel in pp collisions
 - Enhanced $h \to \tau^+ \tau^-$ rate (and $t \to c \tau^+ \tau^-$ [tough])
- Low energy probes:
 - Firm up $B \to D^{(*)} \tau \bar{\nu}$ rate and kinematic distributions; Cross checks w/ inclusive
 - Smaller theor. error in $[d\Gamma(B \to D^{(*)}\tau\bar{\nu})/dq^2]/[d\Gamma(B \to D^{(*)}l\bar{\nu})/dq^2]$ at same q^2
 - Improve bounds on $\mathcal{B}(B \to K^{(*)} \nu \bar{\nu}$
 - $\mathcal{B}(D \to \pi \nu \bar{\nu}) \sim 10^{-5}$ possible, maybe observable at BES III
 - $\mathcal{B}(B_s \to \tau^+\tau^-) \sim 10^{-3}$ possible

Conclusions

- Amusing if NP shows up in an operator w/o much CKM and loop suppression
- Despite statements in the literature, possible to write down (somewhat) sensible models for $B \to D^{(*)} \tau \bar{\nu}$ excesses, with extensions to other flavors
- Several simple extensions to current LHC searches could cover much of this parameter space (see anomalies or rule out models)
- Measurements of $b \to c \tau \bar{\nu}$ will improve in the next decade by order of magnitude (Even if central values change, plenty of room for significant deviations from SM)

Ultimately, data will tell

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong."

[Feynman]