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The Evolution of vacuum energy

•The cosmological constant is very small today

•Expectation is that microscopic origin of cc is 
vacuum energy of quantum field theory
 
•Why is it so small vs. 

•If it is so small why is it not zero?

•Is it always very small (ie. is there an adjustment 
mechanism)?

1 Introduction: A brief history of vacuum energy

The discovery of the acceleration of the Universe [1] has led to one of the deepest puzzles of

modern day physics. While within cosmology the dark energy responsible for the acceler-

ation can simply be described by adding a new parameter, the cosmological constant (cc)

to the expansion equations, within particle physics this CC is expected to correspond to

the vacuum energy of the quantum field theory, determined by the underlying microscopic

physics. It is then difficult to explain why a simple estimate for the vacuum energy is many

orders of magnitude larger than the observed value Λ ∼ (10−3 eV)4, which is much smaller

than any other scales appearing in the Standard Model (SM) of particle physics. Super-

symmetry (SUSY) is the only known mechanism to set the CC to zero, however SUSY

breaking does contribute to the vacuum energy resulting in the oft quoted 60 orders of

magnitude discrepancy, known as the CC problem. On the other hand, if there is a (yet

to be identified) adjustment mechanism for the cosmological constant,1 then why is it not

exactly zero? This has led many scientists to embrace Weinberg’s approach, who predicted

the expected magnitude of the CC from anthropic considerations: if the CC was much

larger than the critical density then structure could not have formed given the observed

size of density perturbations recorded in the the cosmic microwave background.

Looking at the cosmic history of the Universe, one can realize that the CC problem is

in fact not a single problem, but several problems. At every phase transition the Universe

undergoes (when the vacuum expectation values of fields are changing) the vacuum energy

is expected to jump by an amount proportional to the critical temperature Tc:

∆Λi ∝ T 4
c,i . (1.1)

In order for the CC to not dominate after the phase transition (and thus allow ordinary

radiation dominated expansion of the Universe in accordance with successful structure

formation), the total CC after the end of the phase transition has to be quite precisely

equal to the change in the CC generated at the next phase transition. Viewed from this

angle the CC problem is even more disturbing: every time the CC is about to dominate

the energy density a new phase transition must happen, and the amount of cancellation

of the CC during the phase transition is already anticipating the future history of the

Universe. At temperatures above the electroweak scale the CC in the SM is of order M4
W .

As the Universe cools and goes through the EW phase transition the CC gets reduced to a

size of the order of the QCD scale, which then gets reduced to its current size during the

QCD phase transition. Depending on the UV completion of the SM there may be another

GUT and/or SUSY phase transition (or something else). A sketch of the evolution of the

pressure due to radiation together with that of the CC (assuming a GUT, EW and QCD

phase transition) is shown in Fig. 1 which illustrates the main features: the CC was much

larger at earlier times, nevertheless it always remained a sub-dominant component of total

1Any such adjustment mechanism is strongly contrained by the Weinberg no-go theorem [2], for recent
discussions see [3].
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The Evolution of vacuum energy

•If CC result of microphysics, in traditional picture cc 
should undergo a series of jumps at every phase 
transition
 
• Expectation

•Want CC to NOT dominate AFTER phase transition
(otherwise Universe accelerates too early)

•CC AFTER PT should be of order of        of NEXT
phase transition

•eg. before EWPT 
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The Evolution of vacuum energy

•                           so tuning

•At one phase transition Universe already ``knows” 
where the next phase transition will be

•At least QCD, EW PT, potentially also SUSY and/or 
GUT phase transition (if SUSY changes GUT 
expectations)

•In previous history       was much larger than now,
but never dominated previously! 

∆Λ ∼ M4
W Λ+∆Λ ∼ O(Λ4

QCD)

Λ



A simple sketch of the evolution of Λ

energy density except around the times of the phase transitions. A simple toy model for

the evolution of vacuum energy is presented in App. ??. This picture again underlines the

interpretation of the CC as a quantity determined by microscopic physics, which can vary

as the theory undergoes a series of phase transitions.
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Figure 1: Sketch of the evolution of the cosmological constant (red) and the total pressure

dominated by radiation (blue) during the exapansion of the Universe. Left: standard

evolution where the vacuum energy jumps at every phase transition (the ones pictured here

correspond to the GUT, electroweak and QCD phase transitions). Right: the evolution

assuming some form of adjustment mechanism for vacuum energy.

Whether this is indeed the basic picture of the evolution of the CC would be one

of the most important fundamental questions of physics to be verified experimentally.
2

Any such experiment would also yield verification of the microscopic origin of the CC, as

the gravitational effect of the vacuum energy of the quantum field theory. The difficulty

in verifying this picture experimentally is clear: until very recently, the CC was always

a sub-leading component of the energy density, and thus was never the main driver of

the expansion. Moreover the most recent known phase transition is that of QCD, at a

temperature TQCD
c ∼ 200 MeV. While this is a relatively low particle physics scale, most of

the phenomena relevant to experimental cosmology (nucleosynthesis, structure formation,

CMBR) are sensitive only to temperatures well below the QCD scale. Thus one would need

to consider new observables that are potentially sensitive to the details of the QCD or the

electroweak (EW) phase transitions. This is further complicated by the fact that both of

these phase transitions are thought to be quite weak: the QCD phase transition is likely a

cross-over, while the EW phase transition in the SM with a 125 GeV Higgs boson is second

order, whose imprints are weaker than those of strongly first order phase transitions would

be. For example a strongly first order PT is expected to lead to production of gravitational

waves, whose spectrum could potentially be sensitive to the evolution of the CC during

the PT. Since neither of the PT’s is expected to be first order, no significant gravitational

waves would have been produced.

2A potential alternative history (corresponding to that of an adjustment mechanism) would have a CC
that is always zero, except for some spikes during the phase transitions.
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The Evolution of vacuum energy

•       goes through steps during phase transitions

• Whenever       would start to dominate a new phase 
transition happens

•       is always subleading even though it was much 
bigger than it currently is - challenging to find 
experimental tests of this picture

•Size of step of order

•Amount of tuning given by                            

Λ

Λ

Λ

(T (i)
c )4

(T (i+1)
c )4
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•       is always small except around PT’s

• When PT starts      starts growing 

• Adjustment mechanism kicks in and drives 
small again

•Will have its own timescale

•Heights will depend on details of adjustment, PT                            

Λ

Λ

Λ

Alternative evolution of Λ: with adjustment

∆tadj



ΛQCD

•Important goal: to determine experimentally which of 
these pictures is right one 
 
•If steps: lends more credence to anthropic 
arguments 

• If adjustment need to find mechanism

•Difficulty:      always sub-dominant 

•Last of these transitions occurred at               :                            
Above CMB, BBN, etc. Not much precision results 
from that period

Steps or adjustment?

Λ



•Further complication: neither EW nor QCD PT first 
order (at least in SM with 125 GeV Higgs) - no 
gravitational waves produced from bubble collisions...

•NEED: 
             Effect where leading radiation’s contribution 
              strongly suppressed

               Primordial gravitational waves  
          
              System where vacuum energy
                 fraction of total energy   
                 
                           Neutron star

O(1)

Steps or adjustment?



•Establish experimentally that vacuum energy of 
microscopic physics is actually what show up in 
Einstein eq - or there is an adjustment mechanism  
 
•Only care about PT’s that actually change VEVs of 
fields 

•For example recombinations at z~ 1100 is a PT 
where e+p→H, with binding energy 13.6 eV

•Decrease of energy density of matter, but not a 
change in vacuum energy - this energy density gets 
diluted with expansion, while ve does not

Goal



•Tensor perturbations         transverse traceless

•Perturbation of metric in expanding Universe

•Usually conformal time τ is used
where expansion equation    

1. Propagation of primordial gw’s
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Figure 3: Left: Radius-Mass relation for a polytropic fluids in the inner core with (γ =

4/3, K = k
−1/3

) and Fermi Fluid in the outer core, matched at pcr = 2k/3 � (200 MeV)
4
,

for Λ = 0 (solid black), (150 MeV)
4

(dashed blue), (200 MeV)
4

(dot-dashed orange),

(223 MeV)
4

(dotted red). The turn-over in the low-mass and low-radius region corresponds

to stars with central pressure barely above the critical pressure. They are almost fully

Fermi fluids. Right: the same except it shows also a gray curve corresponding to Λcr

3 Effects of vacuum energy on primordial gravitational
waves

In the previous section we presented a potential experimental approach toward measuring

the gravitational effects of vacuum energy by identifying a system where it constitutes

a sizeable fraction of the total energy. The downside of this approach is that does not

directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in

Appendix A. In this section we investigate the effects of the changing CC on the propagation

of primordial gravitational waves. The reason why this might present some hope is that (as

we will see shortly) the effect of the leading radiation term is strongly suppressed, opening

the door for CC to be dominant in periods around the phase transitions.

Gravitational waves correspond to transverse traceless tensor perturbations hij (with

h
i
i = 0, and ∂kh

k
i = 0) of the metric in an expanding Universe

ds
2

= a(τ)
2
�
dτ 2 − (δij + hij)dx

i
dx

j
�

, (3.1)

where we have used conformal time τ related to ordinary time t via a(τ)dτ = dt. The

expansion equation in conformal time is given by

a
�
= aȧ = a

2
H ,

a
��

a
= a

2

�
ä

a
+

ȧ
2

a2

�
=

4πG

3
a

2
T

µ
µ . (3.2)

where H = ȧ/a is the Hubble scale wrt to time t, and
�
means derivative wrt to τ . The

linearized Einstein equation for the tensor perturbations hij (assuming no anisotropic stress
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ȧ
2

a2

�
=

4πG

3
a

2
T

µ
µ . (3.2)
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•Einstein equation:

•Expand in modes:

•Rescaled modes:

•Satisfy very simple equation:

•Interpretation: if                 just free plane wave for χ

•But actual mode is χ/a getting damped by 1/a  

Propagation of primordial gw’s
in the perturbed Tµν) is

h��
ij + 2Hh�

ij −∇2hij = 0 (3.3)

where H = a�/a is the Hubble parameter wrt conformal time τ . The spatial Fourier

transform reads

hij =

�

σ=+,−

�
d3k

(2π)3
�(σ)
ij h(σ)

k (τ)eikx
(3.4)

and the evolution equation for the rescaled modes (omitting the polarization index σ)

χk ≡ ahk (3.5)

becomes

χ��
k + (k2 − a��

a
)χk = χ��

k +

�
k2 − 4πG

3
a2T µ

µ

�
χk = 0 . (3.6)

where in the second equality we used Eq. (3.2).

This basic evolution equation for the tensor modes is quite interesting since it shows

that during radiation domination the leading contribution to Tµν cancels out in the trace.

For truly conformal radiation Tµν = 0, since the equation of state parameter is w =
1
3 .

However, for radiation in the standard model the trace anomaly will generate a sub-leading

contribution from radiation, which has been calculated in great detail in [5]. A simplified

expression for SU(Nc) gauge theories with Nf flavors was provided in [6]:

� ≡ 1− 3w =
5

6π2

g4

16π2

(Nc +
5
4Nf )(

11
3 Nc − 2

3Nf )

2 +
7
2

NcNf

N2
c −1

(3.7)

For example the value for QCD around the TeV scale with αs ∼ 0.1, Nc = 3, Nf = 6

corresponds to � ∼ 6·10
−3

. Thus the total contribution is approximated by T µ
µ = �ρrad+4Λ,

where Λ can be as large as the energy density of the phase transitions happening in this era

(e.g. the EW phase transition). The full power spectrum for the tensor perturbation hk is

the same as the one for χk except for the scale factor 1/a2
and an overall normalization (to

achieve canonical normalization):

Ph = 16πG
|χk|

2

a2
(3.8)

The additional scale factor 1/a2
is actually crucial for understanding the qualitative features

of the spectrum. Due to this suppression χ modes that do not grow with a will be strongly

suppressed. For wavelength k2 � 4πG
3 a2T µ

µ we just have a free wave equation for χ, and the

modes will be strongly suppressed. However when the T µ
µ term dominates, we have

χ��

χ =
a��

a
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where H = ȧ/a is the Hubble scale wrt to time t, and
�
means derivative wrt to τ . The

linearized Einstein equation for the tensor perturbations hij (assuming no anisotropic stress

in the perturbed Tµν) is

h
��
ij + 2Hh

�
ij −∇2

hij = 0 (3.3)

where H = a
�
/a is the Hubble parameter wrt conformal time τ . The spatial Fourier

transform reads

hij =

�

σ=+,−

�
d
3
k

(2π)3
�(σ)ij h

(σ)
k (τ)eikx (3.4)

and the evolution equation for the rescaled modes (omitting the polarization index σ)

χk ≡ ahk (3.5)

becomes

χ��
k + (k

2 − a
��

a
)χk = χ��

k +

�
k
2 − 4πG

3
a
2
T

µ
µ

�
χk = 0 . (3.6)

where in the second equality we used Eq. (3.2).

This basic evolution equation for the tensor modes is quite interesting since it shows

that during radiation domination the leading contribution to Tµν cancels out in the trace.

For truly conformal radiation Tµν = 0, since the equation of state parameter is w =
1
3 .

However, for radiation in the standard model the trace anomaly will generate a sub-leading

contribution from radiation, which has been calculated in great detail in [5]. A simplified

expression for SU(Nc) gauge theories with Nf flavors was provided in [6]:

� ≡ 1− 3w =
5

6π2

g
4

16π2

(Nc +
5
4Nf )(

11
3 Nc − 2

3Nf )

2 +
7
2
NcNf

N2
c−1

(3.7)

For example the value for QCD around the TeV scale with αs ∼ 0.1, Nc = 3, Nf = 6

corresponds to � ∼ 6·10−3
. Thus the total contribution is approximated by T

µ
µ = �ρrad+4Λ,

where Λ can be as large as the energy density of the phase transitions happening in this era

(e.g. the EW phase transition). The full power spectrum for the tensor perturbation hk is

the same as the one for χk except for the scale factor 1/a
2
and an overall normalization (to

achieve canonical normalization):

Ph = 16πG
|χk|

2

a2
(3.8)

The additional scale factor 1/a
2
is actually crucial for understanding the qualitative features

of the spectrum. Due to this suppression χ modes that do not grow with a will be strongly

suppressed. For wavelength k
2 � 4πG

3 a
2
T

µ
µ we just have a free wave equation for χ, and the

modes will be strongly suppressed. However when the T
µ
µ term dominates, we have

χ��

χ =
a��

a
and thus we do find modes growing with a. Therefore the physical picture of the spectrum

is the following. The T
µ
µ term sets an effective damping horizon for the gravitational waves

2π

D2
gw

=
4πG

3
a
2
T

µ
µ ∼ 4πG

3
a
2
(�ρrad + 4Λ+ ρmat) (3.9)

9

Whenever the damping horizon is smaller than the wavelength of the gravitational waves,
those waves will be frozen, while whenever they are inside the damping horizon they will be
damped. The effect of vacuum energy becomes important whenever the damping horizon
is dominated by the CC. The simplest way to estimate the periods when this can actually
happen is to sketch the damping horizon in terms of the scale factor a (or equivalently the
redshift z). The expected dependences of the damping horizons due to radiation, CC and
matter are

D(rad)
gw =

�
3

4πG

a�
�ρ0rad

D(Λ)
gw =

�
3

4πG

1

2
√
Λa

D(mat)
gw =

�
3

4πG

a
1
2

�
ρ0mat

(3.10)

For the periods close to the phase transitions the energy in the CC will start approaching
that in radiation, thus with the additional � suppression of radiation the horizon corre-
sponding to the CC will be the smallest. Those will be the periods when gravitational
waves will be frozen due to the presence of the CC (rather than damped as in the case
without the CC). The results are illustrated in Fig. 4.

With this result of the damping horizon one can find a simple approximation for the
resulting gravitational wave spectrum: as long as a given wavelength is outside the horizon,
it is frozen and its amplitude remains approximately constant. Once it enters the horizon,
χ is approximately like a free plane wave with constant amplitude, and thus the physical
amplitude u = χ/a is damped by 1/areenter. The result of this simple approximation is
shown in Fig. 5. One can clearly observe the two bumps in the spectrum corresponding to
some frequencies leaving and re-entering a second time around the QCD and the EW phase
transitions. The plot of the spectrum weighted by k2 (corresponding to the energy density
of the gravitational waves Ωh) in the same Fig. shows the additional peaks in an even
more pronounced way. Note, that one expects some features to appear in the spectrum
even without taking the effect of the changing vacuum energy into account, however the
magnitude of the features was predicted in a careful study [7] to be smaller than the
effects expected here. The reason is that vacuum energy will start dominating the damping
horizon already well before the phase transition actually starts, and therefore more wave
numbers will leave the horizon for a period, which then re-enter later. For the QCD phase
transition the resulting frequency is around fQCD ∼ 10−9 Hz, which seems very challenging
to be tested experimentally. The situation for the electroweak phase transition is somewhat
more promising, with the upper edge of the frequency band at fEW ∼ 10−6 Hz, about two
orders of magnitude below the expected lowest frequencies for the future eLISA mission.
Finally, the frequencies at which a GUT phase transition would leave its mark are around
fGUT ∼ 5 · 108 Hz, well above the frequency band of LIGO2 or eLISA. It appears that the
currently running or planned gravitational wave detectors are unlikely to be sensitive to
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The damping horizon for gravitational 
waves
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Figure 4: A sketch of the damping horizons for the propagation of gravitational waves in
the early Universe. Red corresponds to radiation, black to cosmological constant and blue
to matter. The actual damping horizon is set by the smallest of these horizons. One can
see that for periods around the phase transitions the contribution of the CC will dominate.
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The energy distribution of initially scale 
invariant primordial gravitational waves

10�14 10�12 10�10 10�8 10�6
f �Hz�

10�29

10�24

10�19

10�14

10�9

�h�k2

10�14 10�12 10�10 10�8 10�6
f �Hz�10�92

10�91

10�90

10�89

�h

Figure 5: A simple sketch of the spectrum of primordial gravitational waves in the presence

of changing vacuum energy. Left: the spectrum of the amplitude Pk, the black curve

corresponds to the standard scenario with vacuum energy, while the red curve is a case

without the effect of vacuum energy (and only the changing number of degrees of freedom

is included). Right: the corresponding curve for the energy density in the gravitational

waves as a function of the frequency. The two peaks corresponding to the QCD and EW

PT are qite pronounced in this plot. The normalization of the vertical axes in both plots

is arbitrary.
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Appendix

A A toy model for the evolution of vacuum energy

In this appendix we present a toy model for the approximate thermal history of vacuum

energy in the early Universe. To obtain a precise history one needs to know the exact details

of the phase transitions that the Universe has undergone while cooling. The expansion

rates will depend on whether the phase transition is first order, generating bubbles that

eventually collide and end up filling all of space, or second order (or just a cross-over) in

which case a more gradual transition is expected. Since neither the QCD nor the EW

phase transition (in the SM with a 125 GeV Higgs) are expected to be first order, we will

for simplicity model all phase transitions as second order ones. To model the dynamics

of these second order phase transitions we will assume that they are adiabatic, reversible

processes. This does not have to be the case, and indeed first order phase transitions are

far from adiabatic; the process of bubble nucleation and collision is not reversible. Here

we will use the adiabatic approximation as a simple model to be able to find a plausible

picture of the evolution of the vacuum energy, corresponding to the assumption that even

during the phase transition one always has homogeneous isotropic thermal equilibrium.
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Comparison plot from traditional calculation 
Komatsu & Watanabe 2006

Much smaller peaks due to just the PT’s
Main point: CC will dominate quite a bit earlier  

11

FIG. 4: The primordial gravitational wave spectrum at present, Ωh(τ0, k)/10−10 , as a function of the comoving wavenumber, k
(or kc in units of Hertz). The frequency of gravitational waves observed today is related to k by f0 = kc/2π. We have assumed
a scale-invariant primordial spectrum and Ωm = 1−Ωr, Ωr = 4.15×10−5h−2, h = 0.7, and Einf = 1016 GeV. We have included
the effects of the effective number of relativistic degrees of freedom and neutrino free-streaming. The dashed line shows the
envelope of the previous calculations which ignored the change in the number of relativistic degrees of freedom and neutrino
free-streaming (Fig. 1).

the QGP phase transition is expected to have happened in a short time period, the instantaneous transition would
be a good approximation, unlike for neutrinos.

One may approximately relate the horizon crossing temperature of the universe to the frequency of the gravitational
waves [13, 41]. The horizon crossing mode, khc = ahcHhc, is related to the temperature at that time by H2

hc =
8π3G

90 g∗,hcT 4
hc. Then using entropy conservation, g∗s,hca3

hcT
3
hc = g∗s0a3

0T
3
0 , one obtains the following conversion factor

from the temperature of the universe to the frequency of gravitational waves observed today:

f0 = 1.65 × 2π × 10−7

(

Thc

1GeV

) [

g∗s(Thc)

100

]−1/3 [

g∗(Thc)

100

]1/2

Hz, (45)

which was derived in [13, 41]. (If we take ε ≡ 1
2π in [41], their equation (156) agrees with the one above.) Throughout

this paper we have been using the comoving wavenumber, k (or kc in units of Hertz), which is related to the
conventional frequency by 2πf0 = kc/a0, where a0 is the present-day scale factor and c is the speed of light. We use
k in this paper, rather than f0, as k is what enters into the wave equation that we solve numerically.

V. DISCUSSION AND CONCLUSION

We have calculated the primordial gravitational wave spectrum, fully taking into account the evolution of the
effective relativistic degrees of freedom and neutrino free-streaming, which were ignored in the previous calculations.
The formalism and results given in this paper are based on solid physics and can be extended to primordial gravitational
waves produced in any inflationary models and high energy particle physics models. As is seen in Figs. 4 and 5, the
spectrum is no longer scale invariant, but has complex features in it. Whatever physics during inflation is, one must
include the evolution of the effective relativistic degrees of freedom and neutrino free-streaming.

[14] studied the gravitational wave spectrum at the QGP phase transition assuming the first order instantaneous
model as well as the second order cross-over model, and found 30% suppression of the energy density spectrum, which
is consistent with our calculation. [39] studied the effect of entropy production from e.g., decay of massive particles in
the early universe on the energy density spectrum. We have not included this effect in our calculations, as the late-time
entropy production is not predicted within the Standard Model. [40] studied the effect of changes in the equation
of state of the universe on the energy density spectrum. While they included the effect of neutrino free-streaming,
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•Need a system which is in different phase of matter

•QCD at large densities probably has those phases: 
at low T but large chemical potential CFL phase, and 
non-CFL phase, both with VEVs different from QCD 
condensates

•Core of neutron star may have this unconventional 
QCD phase

•If adjustment mechanism at play, expect to cancel 
effect of additional cc in the core. Will modify the 
structure and M(R) relation of ns’s

2. Neutron stars for testing vacuum
energy



The phases of QCD
7

liq

T

µ

gas

QGP

CFL

nuclear
superfluid

heavy ion
collider

neutron star

non−CFL
hadronic

FIG. 1 (Color online) A schematic outline for the phase dia-
gram of matter at ultra-high density and temperature. The
CFL phase is a superfluid (like cold nuclear matter) and has
broken chiral symmetry (like the hadronic phase).

cross-flavor pairing, and those stresses will become more
severe as the density (and hence µ̄) decreases. This will
be a major theme of later sections.

F. Overview of the quark matter phase diagram

Fig. 1 shows a schematic phase diagram for QCD that
is consistent with what is currently known. Along the
horizontal axis the temperature is zero, and the density
is zero up to the onset transition where it jumps to nu-
clear density, and then rises with increasing µ. Neutron
stars are in this region of the phase diagram, although
it is not known whether their cores are dense enough to
reach the quark matter phase. Along the vertical axis the
temperature rises, taking us through the crossover from
a hadronic gas to the quark-gluon plasma. This is the
regime explored by high-energy heavy-ion colliders.

At the highest densities we find the color-flavor locked
color-superconducting phase,2 in which the strange quark
participates symmetrically with the up and down quarks
in Cooper pairing. This is described in more detail in
Secs. II, IV, and V. It is not yet clear what happens
at intermediate density, and in Secs. III and VI we will

2 As explained in Sec. I.A, we fix Nf = 3 at all densities, to main-
tain relevance to neutron star interiors. Pairing with arbitrary
Nf has been studied (Schäfer, 2000a). For Nf a multiple of three
one finds multiple copies of the CFL pattern; for Nf = 4, 5 the
pattern is more complicated.

discuss the factors that disfavor the CFL phase at inter-
mediate densities, and survey the color superconducting
phases that have been hypothesized to occur there.

Various aspects of color superconductivity at high tem-
peratures have been studied, including the phase struc-
ture (see Sec. VI.A), spectral functions, pair-forming
and -breaking fluctuations, possible precursors to con-
densation such as pseudogaps, and various collective
phenomena (Abuki et al., 2002; Fukushima and Iida,
2005; Hatsuda et al., 2006; Kitazawa et al., 2002, 2004,
2005a,b, 2007; Voskresensky, 2004; Yamamoto et al.,
2007). However, this review centers on quark matter at
neutron star temperatures, and throughout Secs. II and
III we restrict ourselves to the phases of quark matter
at zero temperature. This is because most of the phases
that we discuss are expected to persist up to critical tem-
peratures that are well above the core temperature of a
typical neutron star, which drops below 1 MeV within
seconds of its birth before cooling down through the keV
range over millions of years.

II. MATTER AT THE HIGHEST DENSITIES

A. Color-flavor locked (CFL) quark matter

Given that quarks form Cooper pairs, the next ques-
tion is who pairs with whom? In quark matter at suf-
ficiently high densities, where the up, down and strange
quarks can be treated on an equal footing and the disrup-
tive effects of the strange quark mass can be neglected,
the most symmetric and most attractive option is the
color-flavor locked phase, where quarks of all three colors
and all three flavors form conventional zero-momentum
spinless Cooper pairs. This pattern, anticipated in early
studies of alternative condensates for zero-density chi-
ral symmetry breaking (Srednicki and Susskind, 1981),
is encoded in the quark-quark self-energy (Alford et al.,
1999b)

〈ψα
i Cγ5ψ

β
j 〉 ∝ ∆CFL(κ+1)δα

i δβ
j + ∆CFL(κ−1)δα

j δβ
i

= ∆CFLεαβAεijA + ∆CFLκ(δα
i δβ

j + δα
j δβ

i )
(5)

The symmetry breaking pattern is

[SU(3)c] × U(1)B

× SU(3)L × SU(3)R
︸ ︷︷ ︸

⊃ [U(1)Q]

→ SU(3)c+L+R
︸ ︷︷ ︸

⊃ [U(1)Q̃]

×Z2 (6)

Color indices α, β and flavor indices i, j run from 1 to 3,
Dirac indices are suppressed, and C is the Dirac charge-
conjugation matrix. Gauge symmetries are in square
brackets. ∆CFL is the CFL gap parameter. The Dirac
structure Cγ5 is a Lorentz singlet, and corresponds to
parity-even spin-singlet pairing, so it is antisymmetric in
the Dirac indices. The two quarks in the Cooper pair are
identical fermions, so the remaining color+flavor struc-

From Alford, Schmitt, Rajagopal, Schaefer
2008
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•Will just consider two phases, inner and outer core

•Neglect crust, envelope, athmosphere...

•Take simple polytropic EOS’s for inner and outer 
cores

•Match them up at critical pressure for phase 
transition

•Add vacuum energy in inner core (and compare to 
case w/o vacuum energy)

Toy model for neutron stars



•At zero temperature, gravitational pressure balanced 
by pressure of fluid. Metric:

•Einstein eq’s (aka Tolman-Oppenheimer-Volkoff eq):

Toy model for neutron stars

the center of neutron stars can actually be significant. This is the reason that we will focus

our attention to the dynamics of neutron stars.

Next we present our analysis of the potential effects of an adjustment mechanism of the

vacuum energy on the structure of neutron stars. We will present a toy model for a neutron

star, with just two regions: the inner core region corresponding to the QCD condensate

phase, where the vacuum is different from that of low-temperature and low-density QCD,

and an outer core region in a more conventional phase with the same condensates that

appear all through space since the temperature of the Universe fell bellow about 150 MeV.

This ordinary condensate presumably contributes to the observed CC, and we are looking

for a difference in vacuum energies. This outer layer is usually treated as a perfect Fermi

fluid phase with no extra vacuum energy. Realistic neutron star simulations are of course

much more involved, with many more layers matched onto each other. We are essentially

neglecting the crust, the envelope and the atmosphere of the neutron star, and taking

oversimplified equations of state (EoS) in the inner and outer cores that contain nearly all

the mass. We are not attempting to present a precise description of the neutron stars, rather

to establish that the presence of the QCD-scale vacuum energy at the core of the neutron

star has a significant effect on the structure of the star, which would change significantly

if the vacuum energy in the core was not present. See ref. [4] for a review of the physics of

neutron stars.

We are assuming a static neutron star in equilibrium at close to zero temperature.

Gravitational pressure is balanced by the pressure of a perfect fluid, which undergoes a

phase transition at a critical pressure pcr. The general form of the metric of a static and

spherically symmetric spacetime is given by

ds2
= eν(r)dt2 − (1− 2GM(r)/r)−1 dr2 − r2dΩ2 . (2.1)

Einstein’s equations for a static and spherically symmetric configuration of a fluid with

pressure p(r) and energy density ρ(r) are given by the Tolman-Oppenheimer-Volkoff equa-

tions:

M �(r) = 4πr2ρ(r) , (2.2)

p�(r) = − p(r) + ρ(r)

r2 (1− 2GM(r)/r)

�
GM(r) + 4πr3p(r)

�
, (2.3)

ν �(r) = − 2p�(r)

p(r) + ρ(r)
, (2.4)

where � denotes differentiation with respect to the radial coordinate r. These are three

equations for four unknown functions: p(r), ρ(r), M(r) and ν(r). The extra equation

needed to solve the system is the EoS p = p(ρ) which is the only model dependent input

sensitive to the actual phase of the fluid in the various layers of the neutron star. The radius

of the neutron star, R, is determined by the condition of vanishing pressure p(R) = 0.

Outside the radius of the neutron star r > R the solution is matched to the Schwarzschild

solution in radial coordinates with total mass M(R).
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•Radius determined by position of vanishing pressure 
p(R)=0

•Assume phase transition happens at 

•Two different EOS’s

•Junction condition:                    continuous, thus
also cont. 
  

Toy model for neutron stars

pcrit
We model the fluid and its corresponding EoS in the following way: as the pressure

increases toward the center of the neutron star, it eventually reaches a critical value pcr

at some critical surface r = rcr where the nucleons “freeze” into a new phase with a non-
vanishing vacuum energy Λ. There are therefore two EoS’s for the two different regions:

p =p(−)(ρ) , ρ = ρ(−) , p ≥ pcr , r ≤ rcr (2.5)

p =p(+)(ρ) , ρ = ρ(+) , p < pcr , r ≥ rcr . (2.6)

The usual Israel junction conditions of continuity of the induced metric and extrinsic cur-
vature at the critical surface require ν �(r) and M(r) to be continuous across the phase
transition. These in turn imply the continuity of the pressure4 p(r). The energy density
ρ is in general discontinuous at rcr as is generically the case for phases separated by a
spacelike surface, such as the vapor-liquid phases of water.

In the inner core region r < rcr we take a polytropic fluid supplemented by a non-
vanishing vacuum energy Λ

p(−)(ρ) =pf (ρ)− Λ = Kργ
f − Λ (2.7)

ρ(−) =ρf + Λ (2.8)

where ρf and pf = Kργ
f represent the ordinary matter partial density and pressure that

include e.g. the effect of binding energy but not the vacuum energy. Notice that K = 1/3
and γ = 1 may be interpreted as the EoS of the bag model. In the outer core region,
r > rcr, we take a perfect Fermi fluid of nucleons described by a parametric EoS

ρ(+) = k [sinh t(r)− t(r)] , p(+) =
k

3

�
sinh t(r) + 3t(r)− 8 sinh

�
t(r)

2

��
(2.9)

where k = m4
N/32π2 and mN is the nucleon mass. Notice that at small pressure and

density the Fermi fluid behaves as polytropic fluid with γ = 5/3, whereas at high density
and pressure it becomes a relativistic perfect fluid with p = ρ/3.

The phase transition only occurs when the Gibbs free energy (density) g = ρ + p− Ts
decreases across the critical surface, δg = g(+) − g(−) > 0. Assuming zero temperature and
using the continuity of pressure, this condition is equivalent to the requirement that the
energy density decreases as we move from the outer to the inner core

δρ = ρ(+)(pcr)− ρ(−)(pcr) = ρ(+)(pcr)−
��

pcr + Λ

K

� 1
γ

+ Λ

�
≥ 0 . (2.10)

Therefore, there exists a critical value of the vacuum energy Λcr (which depends on pcr and
the EoS’s parameters) such that δρ(Λcr) = 0. The phase transition is thermodynamically

4We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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•For inner core use polytropic with cc:

•For outer core just polytropic 

• The value                   reproduces the small 
pressure limit of a Fermi fluid

•The cc can not be too large negative:
Otherwise partial pressure of QCD fluid negative

Toy model for neutron stars

We model the fluid and its corresponding EoS in the following way: as the pressure

increases toward the center of the neutron star, it eventually reaches a critical value pcr
at some critical surface r = rcr where the nucleons “freeze” into a new phase with a non-

vanishing vacuum energy Λ. There are therefore two EoS’s for the two different regions:
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transition. These in turn imply the continuity of the pressure4 p(r). The energy density

ρ is in general discontinuous at rcr as is generically the case for phases separated by a

spacelike surface, such as the vapor-liquid phases of water.

In the inner core region r < rcr we take a polytropic fluid supplemented by a non-

vanishing vacuum energy Λ

p(−)(ρ) =pf (ρ)− Λ = K−ρ
γ−
f − Λ (2.7)

ρ(−) =ρf + Λ (2.8)

where ρf and pf = K−ρ
γ−
f represent the ordinary matter partial density and pressure that

include e.g. the effect of binding energy but not the vacuum energy. Notice that K = 1/3
and γ = 1 may be interpreted as the EoS of the bag model. In the outer core region,

r > rcr, we take another polytropic fluid described by K+ and γ+ but no vacuum energy,

Λ+ = 0

p(+)(ρ) =pf (ρ) = K+ρ
γ+
f (2.9)

ρ(+) =ρf . (2.10)

The value γ+ = 5/3 reproduces the small pressure and density limit of a perfect Fermi

fluid.

Notice that the vacuum energy can’t be too negative. Indeed, should Λ be smaller

than −pcrit, the matter partial pressure pf would become negative triggering an instability

of the fluid that would separate in more than two phases of matter. Thus one has the

condition

Λ > −pcr . (2.11)

One may expect also an upper bound on Λ by thermodynamical considerations. The

equilibrium between the phases requires dg = 0 where g is the Gibbs free energy density

g = (ρ + p)/n − Ts and n is the total number density. It may be possible that such

equilibrium condition can not be satisfied by taking Λ at arbitrarily large values. This

upper bound is difficult to be derived since dg = dp/n−sdT +µidYi and one would need to

4We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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In the inner core region r < rcr we take a polytropic fluid supplemented by a non-

vanishing vacuum energy Λ

p(−)(ρ) =pf (ρ)− Λ = K−ρ
γ−
f − Λ (2.7)

ρ(−) =ρf + Λ (2.8)

where ρf and pf = K−ρ
γ−
f represent the ordinary matter partial density and pressure that

include e.g. the effect of binding energy but not the vacuum energy. Notice that K = 1/3
and γ = 1 may be interpreted as the EoS of the bag model. In the outer core region,

r > rcr, we take another polytropic fluid described by K+ and γ+ but no vacuum energy,

Λ+ = 0

p(+)(ρ) =pf (ρ) = K+ρ
γ+
f (2.9)

ρ(+) =ρf . (2.10)

The value γ+ = 5/3 reproduces the small pressure and density limit of a perfect Fermi

fluid.

Notice that the vacuum energy can’t be too negative. Indeed, should Λ be smaller

than −pcrit, the matter partial pressure pf would become negative triggering an instability

of the fluid that would separate in more than two phases of matter. Thus one has the

condition

Λ > −pcr . (2.11)

One may expect also an upper bound on Λ by thermodynamical considerations. The

equilibrium between the phases requires dg = 0 where g is the Gibbs free energy density

g = (ρ + p)/n − Ts and n is the total number density. It may be possible that such

equilibrium condition can not be satisfied by taking Λ at arbitrarily large values. This

upper bound is difficult to be derived since dg = dp/n−sdT +µidYi and one would need to

4We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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dG = 0
•Likely also a thermodynamic upper bound to satisfy
               for Gibbs free energy in equilibrium between 
phases. Will limit upper value of       to few

•Checked nicely reproduce the characteristic M(R) 
curves for neutron stars 

Toy model for neutron stars
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•Check effect of changing      on M(R) curve

•Depending on parameters maximal mass can 
change by as much as 20%

•But depends very strongly on equations of state 
parameters, critical pressure...  

Toy model for neutron stars
Λ



Sensitivities of NS’s to vacuum energy
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Sensitivities of NS’s to vacuum energy
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•An important part of our standard picture of 
cosmology & particle physics: cc should change 
during PT’s

•Never dominates - how could we check 
experimentally?

•Look for effect where radiation is suppressed:
Primordial gravitational waves - predict larger peaks 
in energy density spectrum 

•Look for systems where vacuum energy is sizeable 
fraction
Neutron stars - should cause measurable deviation in 
maximal mass of NS’s

Summary


