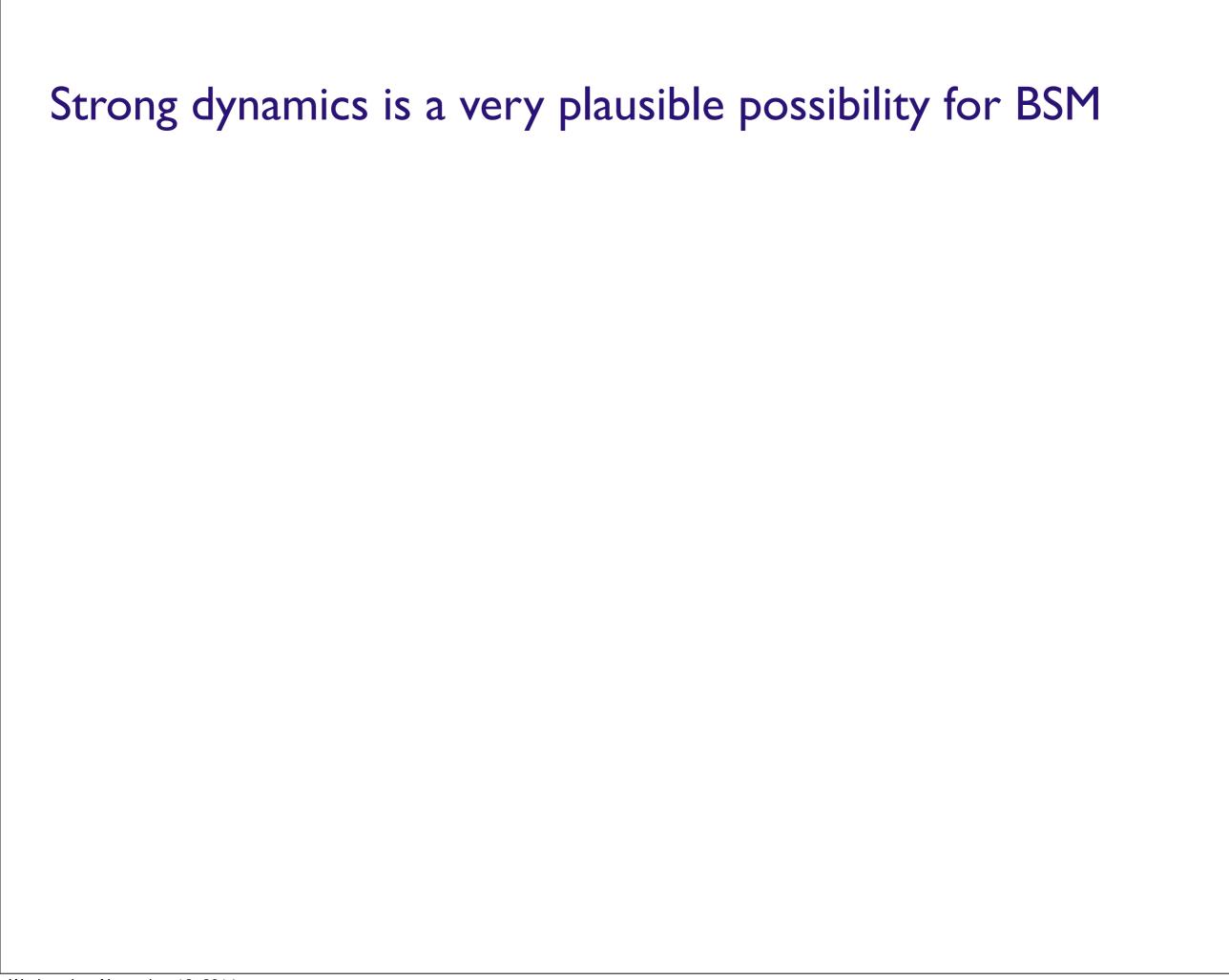
Thermal Dark Matter from Strong Interactions

Michele Redi

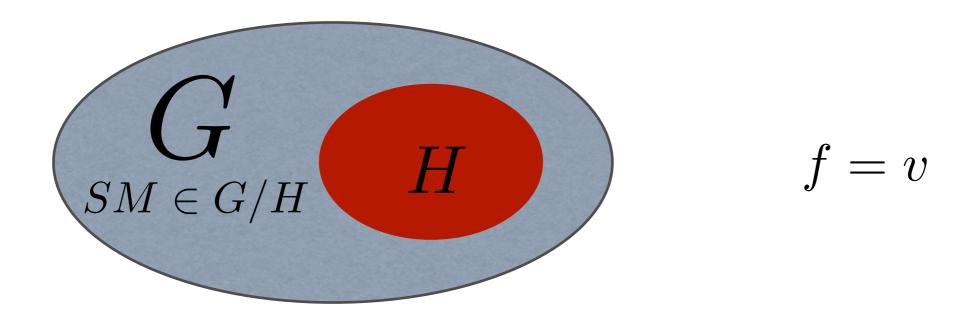
With O. Antipin and A. Strumia 1410.1817 + work in progress

Weizmann, November 2014



Strong dynamics is a very plausible possibility for BSM

In origin it was technicolor:

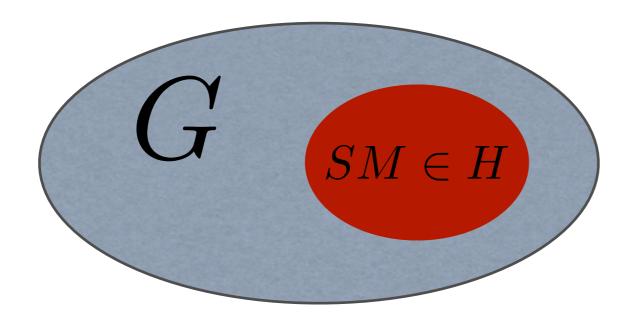


Completely natural theory. No need for the Higgs scalar.

Already in trouble before LHC, now dead.

Next it was the composite Higgs

Higgs could be an approximate GB



$$m_{\rho} = g_{\rho} f$$

Ex:

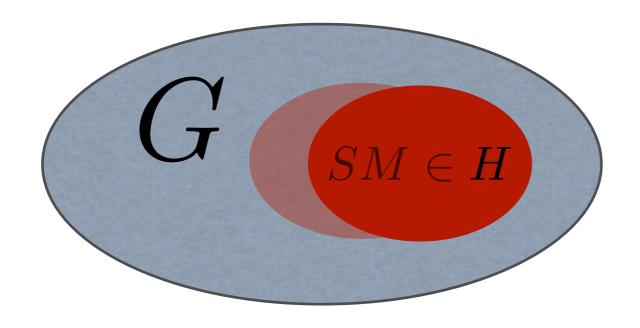
$$\frac{SO(5)}{SO(4)} \longrightarrow f > v$$

Agashe, Contino, Pomarol, '04

GB = 4

Next it was the composite Higgs

Higgs could be an approximate GB



$$m_{\rho} = g_{\rho} f$$

Ex:

$$\frac{SO(5)}{SO(4)} \xrightarrow{f > v} GB = 4$$

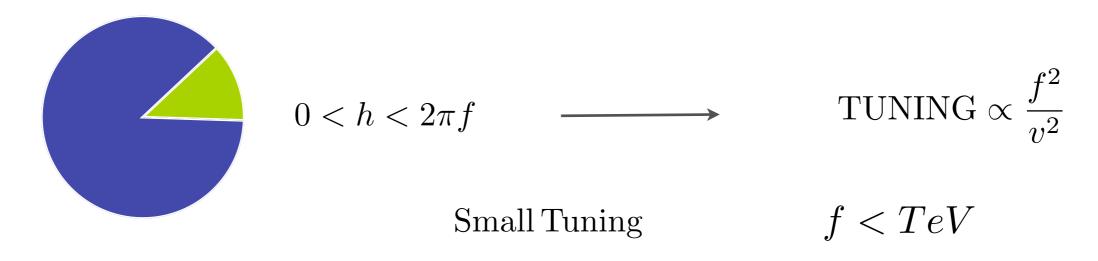
Agashe, Contino, Pomarol, '04

Electro-weak scale determined by vacuum alignment.

Deviations from SM:

$$\mathcal{O}\left(\frac{v^2}{f^2}\right)$$

Higgs is an angle,



- Natural models are constrained by flavor, precision tests and now LHC.
- Hard to construct UV theories.

 Typically postulate effective theories with correct features.

Electro-weak preserving strong sector:

Electro-weak preserving strong sector:

$$SM + H$$

$$y$$

$$Q_{\alpha}^{i}$$

$$G_{ij}^{\mu}$$

Higgs is elementary and couples to strong dynamics with renormalizable couplings:

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4g_{TC}^2} G_{\mu\nu}^a G^{a\mu\nu} + i\bar{\mathcal{Q}}\gamma_\mu (\partial_\mu - iA_\mu - iG_\mu)\mathcal{Q} + \bar{\mathcal{Q}}M\mathcal{Q}$$

Very weak bounds:

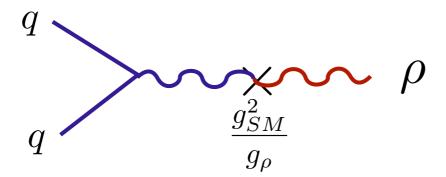
- Automatic MFV
- Precision tests ok
- LHC: $m_{\rho} > 1 2 \,\mathrm{TeV}$

Interesting phenomenology:

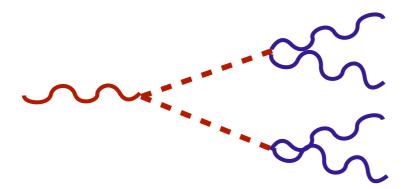
- Plausible at LHC13
- Automatic dark matter candidates
- Simple UV models
- Can generate the electro-weak scale

COLLIDER SIGNATURES

Vector resonances with SM quantum numbers predicted



Decay to hidden pions and back to SM gauge bosons,



Pions can also be stable or long lived.

Models

SU(n) gauge theory with NF flavors. Techni-quarks are vectorial with respect to SM.

Fermions	SM	$SU(n)_{\mathrm{TC}}$	
$\overline{\Psi_L}$	$\sum_i r_i$	\overline{n}	$\sum d[r_i] = N_F$
Ψ_R	$\sum_i \bar{r}_i$	$ar{n}$	\overline{i}

Models

SU(n) gauge theory with NF flavors. Techni-quarks are vectorial with respect to SM.

$$\begin{array}{c|cccc} \hline \text{Fermions} & SM & SU(n)_{\text{TC}} \\ \hline \Psi_L & \sum_i r_i & n & \sum_i d[r_i] = N_F \\ \Psi_R & \sum_i \bar{r}_i & \bar{n} & i \end{array}$$

Vacuum respects electro-weak symmetry. Massless Goldstone bosons:

$$\frac{SU(N_F) \times SU(N_F)}{SU(N_F)} \qquad \text{Adj}[SU(N_F)] = \text{Adj}[SM] + R(\pi)$$

Charged pions acquire positive mass from gauge interactions

$$m_{\pi}^2 \approx \frac{3g_2^2}{(4\pi)^2} J(J+1) m_{\rho}^2$$

These models have automatic dark matter candidates:

Baryons

$$B = \epsilon^{i_1 i_1 \dots i_n} Q_{i_1}^{\{\alpha_1} Q_{i_2}^{\alpha_2} \dots Q_{i_n}^{\alpha_n\}}$$

$$m_B \sim N m_{\rho}$$

Lightest multiplet has minimum spin among reps.

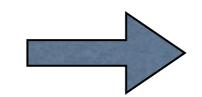
$$n = 3$$

$$n=4$$

DM candidate:

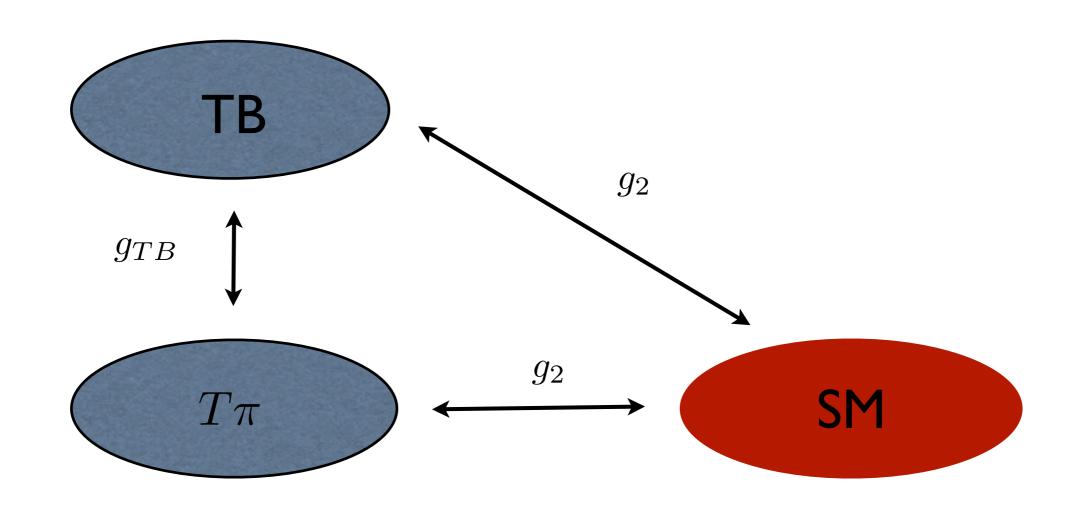
$$Q_{TB} = T_3 + Y_{TB} = 0$$

$$Y_{TB} = 0$$



J=0,1,2,...

Baryons-anti-baryon annihilate mostly into pions



$$\langle \sigma_{B\bar{B}}^{ANN} v \rangle \sim \frac{4\pi}{m_B^2}$$

THERMAL ABUNDANCE

$$m_B \sim 50 - 100 \, \mathrm{TeV}$$

Pions

Bai, Hill '10

Pions can be stable due to G-parity:

$$\psi \to S \psi^C$$

$$W^a_\mu J^a \to W^a_\mu J^a$$

$$S^\dagger J^a S = -J^{a*}$$

$$A^a t^a \to A^a (-t^a)^*$$

$$\Pi^J \to (-1)^J \Pi^J$$

Triplet is stable. Behaves as minimal dark matter. strum

Strumia, Cirelli '05

$$m_{J=1} \sim 2.5 \, {\rm TeV}$$

$$\sigma_{SI} = 0.12 \pm 0.03 \times 10^{-46} \,\mathrm{cm}^2$$

With reducible SM reps pions can also be stable due to species symmetry.

$$Adj_{SU(N_F)} = \sum_{i=1}^{K} r_i \times \sum_{i=1}^{K} \bar{r}_i - 1$$

$$\bar{\Psi}_I \Psi_J$$
 $I \neq J$

K-I singlets do not acquire mass from gauge interactions. Anomalous under the SM:

$$\frac{e^2}{(4\pi)^2 f} \eta F \tilde{F}$$

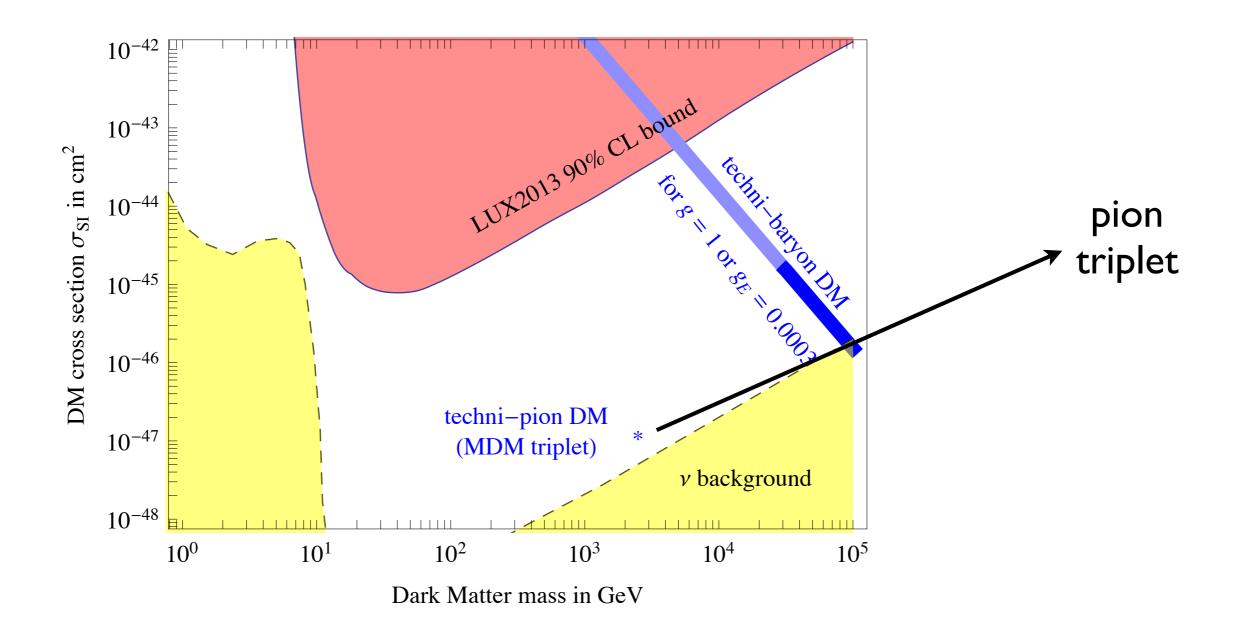
Singlets can be very light.

DM summary (M=0):

number of		$TC\pi$		TCb	DM under		
techni-flavors Yukawa			N=3	N=4	N=5	$\mathrm{SU}(N_F)_V/\mathrm{SU}(2)_L$	
$N_F = 2$		3	2	1	2	$\mathrm{SU}(2)_F$	
M1: $Q = 2_{Y=0}$	N	3	charged	1	charged	$\mathrm{SU}(2)_L$	
$N_F = 3$		8	8	$\bar{6}$	<u>15</u>	$\mathrm{SU}(3)_F$	
M1: $Q = 1_Y + 2_{Y'}$	Y	N	1	1	1	$\mathrm{SU}(2)_L$	
M2: $Q = 3_{Y=0}$	N	3	3	1	3	$\mathrm{SU}(2)_L$	
$N_F=4$		15	20	20'	60	$\mathrm{SU}(4)_F$	
M1: $Q = 4_{Y=0}$	N	3	charged	1	charged	$\mathrm{SU}(2)_L$	
M2: $Q = 2_Y + 2_Y$	N	4×3	charged	1	charged	$\mathrm{SU}(2)_L$	
M3: $Q = 3_{Y=0} + 1_{Y=0}$	N	3×3	1	1	1	$\mathrm{SU}(2)_L$	
$N_F = 5$		24	$\overline{40}$	50	175′	$\mathrm{SU}(5)_F$	
M1: $Q = 2_Y + 3_{Y'}$	Y	N	1	charged	charged	$\mathrm{SU}(2)_L$	
M2: $Q = 5_{Y=0}$	N	3	3	1	1	$\mathrm{SU}(2)_L$	

Often DM has two components.

If Yukawas are allowed pions are not stable. Quark masses may change the lightest baryon.



Dipole interactions:

$$\frac{1}{4 m_B} \bar{B} \sigma_{\mu\nu} (g_M + i g_E \gamma_5) B F_{\mu\nu}$$

$$\frac{d\sigma}{dE_R} \approx \frac{e^2 Z^2}{16\pi m_B^2 E_R} \left(g_M^2 + \frac{g_E^2}{v^2} \right) \longrightarrow g_M^2 + 10^7 g_E^2 < \left(\frac{m_B}{5 \text{ TeV}} \right)^3$$

Magnetic Dipoles

$$g_M \sim \mathcal{O}(1)$$

Electric dipoles

Needs CP violation. Naturally generated by $\,\theta_{
m DARK}$

$$g_E \sim \frac{\theta}{10} \frac{1}{16\pi^2} \frac{m_\pi^2}{f^2} \log \frac{m_B^2}{m_\pi^2}$$

Interesting ball park for experiments. In QCD:

$$g_E \sim 10^{-2} \times \theta$$

Spectrum is also modified:

$$V(U) = -\frac{f_{\pi}^2}{2} \left(\text{Tr}[MU + M^{\dagger}U^{\dagger}] - \frac{a}{N} (-i\log\det U - \theta)^2 \right)$$

$$U = U_0 V \qquad U_0 = \text{Diag}[e^{\phi_1}, e^{\phi_2}, \dots, e^{i\phi_{N_F}}]$$

$$m_i^2 \sin \phi_i = \frac{a}{N} (\theta - \sum \phi_i) \qquad i = 1, \dots, N_F.$$

In QCD:

$$m_{\pi^{+}}^{2} = m_{\pi^{0}}^{2} = \frac{4v}{f_{\pi}^{2}} [m_{u} \cos \phi_{u} + m_{d} \cos \phi_{d}]$$

$$m_{K^{+}}^{2} = \frac{4v}{f_{\pi}^{2}} [m_{u} \cos \phi_{u} + m_{s} \cos \phi_{s}]$$

$$m_{K^{0}}^{2} = \frac{4v}{f_{\pi}^{2}} [m_{d} \cos \phi_{d} + m_{s} \cos \phi_{s}]$$

$$m_{\eta^{0}}^{2} = \frac{4v}{3f_{\pi}^{2}} [m_{u} \cos \phi_{u} + m_{d} \cos \phi_{d} + 4m_{s} \cos \phi_{s}]$$

$$n = N_F = 3$$

Pions and lightest baryons are adjoint of SU(3).

Rescale QCD:

$$\frac{m_B}{m_\rho} \approx 1.3 \qquad \frac{m_\pi}{m_\rho} \approx 0.1 \sqrt{J(J+1)}$$

Technibaryon thermal abundance:

$$\sigma_{p\bar{p}}^{QCD} \sim 100 \,\mathrm{GeV}^{-2}$$
 \longrightarrow $\frac{\Omega_{DM}}{\Omega_{DM}^c} \sim \left(\frac{M_B}{200 \,\mathrm{TeV}}\right)^2$

 $\bullet \qquad SU(2)_L \subset SU(3)_F$

$$Q=3$$

$$8 = 3 + 5$$

Scalar triplet is stable and is dominant dark matter.

 $\bullet \qquad SU(2)_L \subset SU(3)_F$

$$Q=3$$

$$8 = 3 + 5$$

Scalar triplet is stable and is dominant dark matter.

 $\bullet \quad SU(2)_L \times U(1)_Y \subset SU(3)_F$

$$Q=2+1$$

$$8 = 2(p, n) + 3(\Sigma^{\pm,0}) + 2(\Xi^{0}, \Xi^{-}) + 1(\Lambda_{0})$$

$$\mathbf{8} = \mathbf{2}(K^{0}, K^{+}) + \mathbf{3}(\pi^{\pm,0}) + \mathbf{2}(K^{-}, \bar{K}^{0}) + \mathbf{1}(\eta)$$

Quantum numbers allow for Yukawa interactions. Singlet GB acquires mass and triplet decays.

Dark matter is a technibaryon.

DYNAMICAL GENERATION OF THE WEAK SCALE

Assumption: the fundamental theory has no scales.

Practically discard uncalculable quadratic divergences. SM is natural ("finite naturalness"):

Farina, Pappadopulo, Strumia, '14

$$\delta m_h^2 \sim -\frac{3y_t^2}{(4\pi)^2} m_h^2 \log \frac{m_t^2}{\mu^2}$$

DYNAMICAL GENERATION OF THE WEAK SCALE

Assumption: the fundamental theory has no scales.

Practically discard uncalculable quadratic divergences. SM is natural ('finite naturalness'):

Farina, Pappadopulo, Strumia, '14

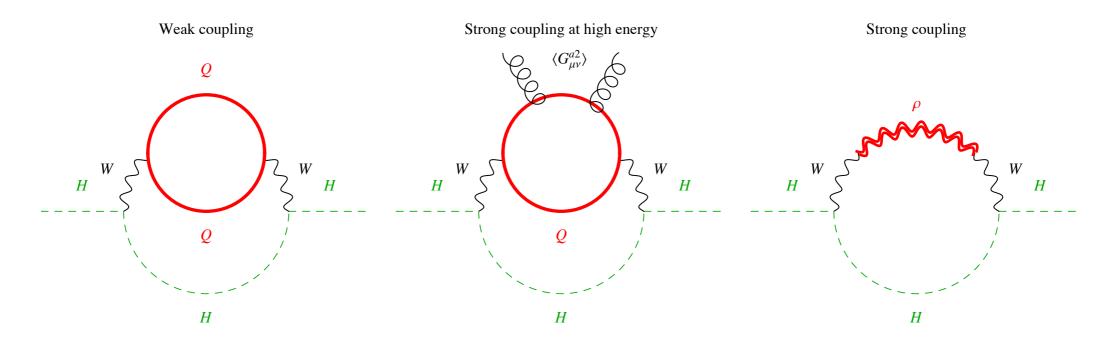
$$\delta m_h^2 \sim -\frac{3y_t^2}{(4\pi)^2} m_h^2 \log \frac{m_t^2}{\mu^2}$$

With no masses electro-weak scale determined by the confinement scale of strong sector.

Gauge (Yukawa) interactions trigger electro-weak symmetry breaking:

$$m_h \sim \alpha_2 f$$

Gauge Interactions



Strong dynamics modifies SM propagators

$$G_{\mu\nu}^{VV}(q) = -i\frac{\eta_{\mu\nu}}{q^2} (1 + g_2^2 \Pi_{VV}(q^2)) + i\xi_V \frac{q_\mu q_\nu}{q^2}$$
$$i\int d^4x \, e^{iq\cdot x} \langle 0|T J_\mu^a(x) J_\nu^b(0)|0\rangle \equiv \delta^{ab}(q^2 g_{\mu\nu} - q_\mu q_\nu) \Pi_{VV}(q^2)$$

Higgs mass:

$$\Delta m^2 = \frac{9g_2^4}{4(4\pi)^2} \int dQ^2 \Pi_{VV}(-Q^2)$$

Contributions is finite. OPE:

$$\Pi_{VV}(q^2) \stackrel{q^2 \gg \Lambda_{TC}^2}{\simeq} c_1(q^2) + c_2(q^2) \langle 0| m_Q Q_L Q_R |0\rangle + c_3(q^2) \langle 0| \frac{\alpha_{TC}}{4\pi} G_{\mu\nu}^{A2} |0\rangle + \cdots$$

$$c_1 = C \frac{\alpha_2}{3\pi} \ln(-q^2) + \cdots$$
 $c_3 = -C' \frac{g_2^2}{3q^4}$

$$\Delta m^{2}|_{\text{UV}} \simeq -\frac{3C'g_{2}^{4}}{4(4\pi)^{2}}\langle 0|\frac{\alpha_{\text{TC}}}{4\pi}G_{\mu\nu}^{A2}|0\rangle \int_{Q_{\text{min}}^{2}}^{\infty} \frac{dQ^{2}}{Q^{4}} \qquad \left(\text{in QCD} \quad \langle 0|\frac{\alpha_{s}}{4\pi}G_{\mu\nu}^{A2}|0\rangle = 0.03\,\text{GeV}^{4}\right)$$

Contributions is finite. OPE:

$$\Pi_{VV}(q^2) \stackrel{q^2 \gg \Lambda_{TC}^2}{\simeq} c_1(q^2) + c_2(q^2) \langle 0 | m_Q Q_L Q_R | 0 \rangle + c_3(q^2) \langle 0 | \frac{\alpha_{TC}}{4\pi} G_{\mu\nu}^{A2} | 0 \rangle + \cdots$$

$$c_1 = C \frac{\alpha_2}{3\pi} \ln(-q^2) + \cdots$$
 $c_3 = -C' \frac{g_2^2}{3q^4}$

$$\Delta m^{2}|_{\text{UV}} \simeq -\frac{3C'g_{2}^{4}}{4(4\pi)^{2}}\langle 0|\frac{\alpha_{\text{TC}}}{4\pi}G_{\mu\nu}^{A2}|0\rangle \int_{Q_{\text{min}}^{2}}^{\infty} \frac{dQ^{2}}{Q^{4}} \qquad \left(\text{in QCD} \quad \langle 0|\frac{\alpha_{s}}{4\pi}G_{\mu\nu}^{A2}|0\rangle = 0.03\,\text{GeV}^{4}\right)$$

Sign is negative:

$$\frac{\partial \Delta m^2}{\partial \Lambda_{\rm TC}^2} = \frac{9g_2^4}{4(4\pi)^2} \int dQ^2 \frac{\partial \Pi_{VV}}{\partial \Lambda_{\rm TC}^2} = -\frac{9g_2^4}{4(4\pi)^2} \int dQ^2 \frac{Q^2}{\Lambda_{TC}^2} \frac{\partial \Pi_{VV}}{\partial Q^2}$$

$$= \frac{9g_2^4}{4(4\pi)^2} \int dQ^2 \frac{1}{\pi} \frac{Q^2}{\Lambda_{TC}^2} \int_0^\infty ds \frac{\operatorname{Im} \Pi_{VV}(s)}{(s+Q^2)^2} < 0$$

Estimate:

$$\Pi_{VV}(q^2) = \frac{f^2}{(q^2 - m_\rho^2)}$$

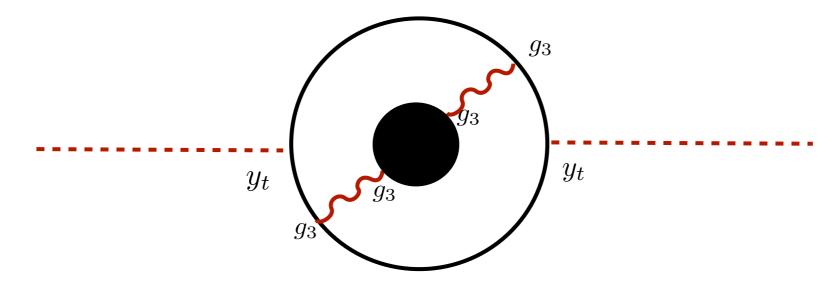
$$\Delta m^2 \approx -\frac{9g_2^4}{4(4\pi)^2} \int dQ^2 \frac{f^2}{(Q^2 + m_\rho^2)} \sim -\alpha_2^2 f^2$$

We obtain the following scales

$$f \sim \frac{m_H}{\alpha_2} \sim \text{few} \times \text{TeV}$$

$$m_{\pi} \sim 2 \, \text{TeV}, \qquad m_{\rho} \sim 20 \, \text{TeV}, \qquad m_{B} \sim 50 \, \text{TeV}$$

• 3-loops



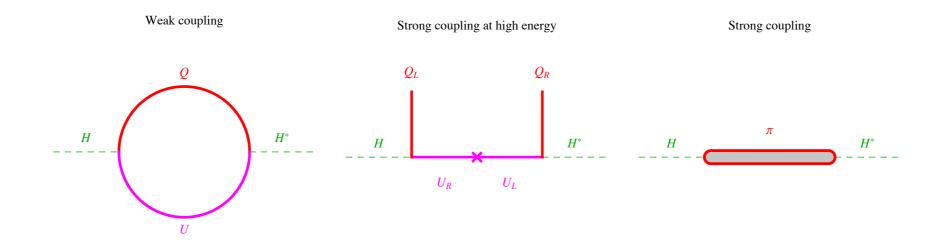
Positive Higgs mass:

$$\Delta m^2 = -\frac{64y_t^2 g_3^4}{(4\pi)^4} \int dQ^2 \Pi_{GG}(-Q^2) \sim \frac{y_t^2 g_3^4}{(4\pi)^4} f^2$$

Gravitational corrections can be related to 2-point function of energy momentum tensor

$$\Delta m^2 \sim \frac{y_t^2 m_\rho^4 f^2}{(4\pi)^4 M_p^4}$$

Yukawa Interactions



$$yHQ_LQ_R$$

Chiral lagrangian,

$$y \frac{N}{(4\pi)^2} m_\rho^3 \text{Tr}[HU]$$

2 Higgs doublets mix:

$$\pi^{*} \qquad H^{*}$$

$$\pi \left(\frac{(\mathcal{O}(g^{2}) \pm \mathcal{O}(y^{2}))m_{\rho}^{2}/(4\pi)^{2}}{\mathcal{O}(y)m_{\rho}^{2}\sqrt{N}/(4\pi)} \right)$$

$$H \left(\frac{(\mathcal{O}(y^{2}) \pm \mathcal{O}(y^{2}))m_{\rho}^{2}/(4\pi)^{2}}{\mathcal{O}(y^{2})m_{\rho}^{2}N/(4\pi)^{2}} \right)$$

Mixing induces negative Higgs mass

$$\Delta m^2 \approx -\frac{y^2 N}{(4\pi)^2} \frac{m_{\rho}^4}{m_{\pi}^2}$$

The singlet acquires a mass

$$m_{\eta} \sim y \frac{m_{\rho}}{m_{\pi}} v$$

CONCLUSIONS

• A strongly coupled sector that does not break electroweak symmetry is a plausible possibility for new physics compatible with what we know and perhaps observable.

CONCLUSIONS

 A strongly coupled sector that does not break electroweak symmetry is a plausible possibility for new physics compatible with what we know and perhaps observable.

• Dark matter is very naturally a technibaryon or a technipion stable due to accidental symmetries.

CONCLUSIONS

• A strongly coupled sector that does not break electroweak symmetry is a plausible possibility for new physics compatible with what we know and perhaps observable.

• Dark matter is very naturally a technibaryon or a technipion stable due to accidental symmetries.

• Within finite naturalness electro-weak symmetry breaking could be induced from the technicolor dynamical scale. Scales and signs roughly work out.

SO(N) models

With NF fundamental flavors:

$$\frac{SU(N_F)}{SO(N_F)}$$

Baryons are stable but two baryons can annihilate. Pions are in the symmetric rep

$$\operatorname{Sym}_{SO(N_F)} = \left[\sum_{i=1}^{K} r_i \times \sum_{i=1}^{K} \bar{r}_i \right]_{\operatorname{Sym}} - 1$$

$\mathrm{SO}(\mathrm{N_F})$	Yukawa	$T\pi$	N = 3	N=4
$N_F = 3$		5	5	_
3_{0}	0	no	5	
$N_F=4$		9	16	10
$2_0 + 1_Y$	1	no	1	1
$2_0 + 2_0$	0	$3+3_{IJ}$	charged	1
$3_0 + 1_0$	0	3	3	5

Unification

Assume that new fermions are in complete reps.

SU(5)	$\mathrm{SU}(3) \otimes$	SU(2)	⊗ U(1)	n_3	\bar{n}_3	n_2	z	name	Δb_3	Δb_2	Δb_1
$5\oplus ar{5}$	$\overline{3}$	1	1/3	0	1	0	0	D	2/3	0	4/15
$5\oplus ar{5}$	1	2	$^{1}/_{2}$	0	0	1	0	L	0	$^{2/3}$	$^{2/5}$
$10 \oplus \overline{10}$	$\overline{3}$	1	$-\frac{2}{3}$	0	1	0	1	U	$^{2/3}$	0	16/15
$10 \oplus \overline{10}$	1	1	-1	0	0	0	1	E	0	0	4/5
$10 \oplus \overline{10}$	3	2	$^{1}/_{6}$	1	0	1	0	Q	4/3	2	2/15
$15 \oplus \overline{15}$	3	2	1/6	=	=	=	=	Q	=	=	=
$15 \oplus \overline{15}$	1	3	1	0	0	2	0	T	0	8/3	12/5
$15 \oplus \overline{15}$	6	1	$-\frac{2}{3}$	2	0	0	0	S	10/3	0	32/15
24	1	3	0	0	0	2	1	V	0	4/3	0
24	8	1	0	1	1	0	0	G	2	0	0
24	$\overline{3}$	2	⁵ / ₆	0	1	1	0	X	4/3	2	10/3

Giudice, Rattazzi, Strumia, '12

a)
$$L + E \subset 5 + 10$$

c)
$$E + T \subset 10 + 15$$

b)
$$L + T \subset \mathbf{5} + \mathbf{15}$$

d)
$$V \subset \mathbf{2}4$$

$$\frac{1}{\alpha_G(m_G)} - \frac{1}{\alpha_i(m_Z)} = -\frac{b_i^{SM}}{2\pi} \log \frac{m_\rho}{m_Z} - \frac{b_i^A}{2\pi} \log \frac{m_1}{m_\rho} - \frac{b_i^B}{2\pi} \log \frac{m_G}{m_1}$$

$$b_3 = \frac{1}{3}(4N_g - 33) + \Delta b_3$$

$$b_2 = \frac{1}{3}(4N_g - 22 + \frac{1}{2}) + \Delta b_2$$

$$b_1 = \frac{1}{3}(4N_g + \frac{3}{10}) + \Delta b_1$$

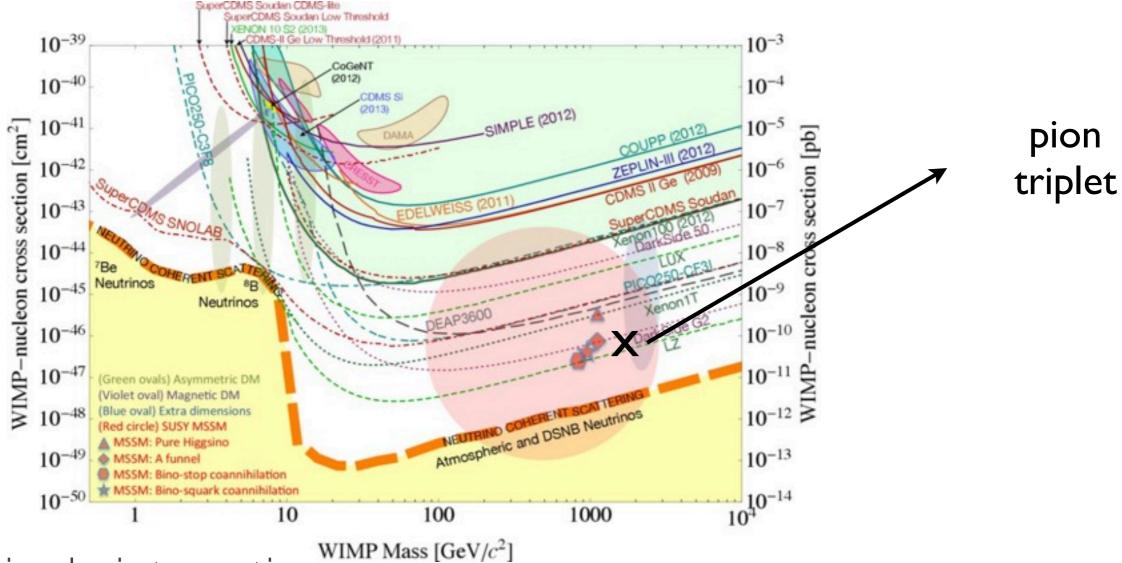
Ex:

$$V=(1,3)_0\subset 24$$

$$\alpha_G \approx 0.085$$

$$m_1 \approx 4 \times 10^6 \, \mathrm{GeV}$$

$$m_G \approx 3 \times 10^{14} \, \mathrm{GeV}$$



Dipole interactions: WIMP Mass [GeV/c²]

$$\frac{1}{4 m_B} \bar{B} \sigma_{\mu\nu} (g_M + i g_E \gamma_5) B F_{\mu\nu}$$

$$\frac{d\sigma}{dE_R} \approx \frac{e^2 Z^2}{16\pi \, m_B^2 \, E_R} \left(g_M^2 + \frac{g_E^2}{v^2} \right) \qquad \longrightarrow \qquad g_M^2 + 8 \times 10^6 g_E^2 < \left(\frac{m_B}{5.8 \, \text{TeV}} \right)^3$$