

Andreas Weiler (CERN/DESY)

Hierarchy problem

motivates deviations in

see e.g. Low, Vichi, Rattazzi

Hierarchy problem

motivates deviations in

see e.g. Low, Vichi, Rattazzi
we actually measure:

$$
\propto \lim _{p \rightarrow 0}|\mathrm{SM}+\mathrm{NP}|^{2}
$$

$19=8+3+8$ change Higgs

kin. term:

Operator not visible in vacuum (redefinition of input parameter)

But can affect h physics:

affects $\mathrm{GG} \rightarrow \mathrm{h}$!

Higgs fit

beyond inclusive Higgs production

- So far mostly produced on-shell Higgs at a characteristic scale $\mu \approx m_{H}$
- want to test Higgs couplings at large energy
- analog to LEP1 (on-shell $Z=>S, T$) vs. LEP2 (offshell $Z=>W, Y$)

Higgs EFT

$$
\begin{aligned}
\mathcal{O}_{t} & =\frac{y_{t}}{v^{2}}|H|^{2} \bar{Q}_{L} \tilde{H} t_{R}, \quad \mathcal{O}_{g}=\frac{\alpha_{s}}{12 \pi v^{2}}|H|^{2} G_{\mu \nu}^{a} G^{a \mu \nu}, \\
\mathcal{L} & =\mathcal{L}_{S M}+\left(1-c_{t}\right) \mathcal{O}_{t}+k_{g} \mathcal{O}_{g} .
\end{aligned}
$$

$$
\frac{\sigma_{\mathrm{incl}}\left(\kappa_{t}, \kappa_{g}\right)}{\sigma_{\mathrm{incl}}^{\mathrm{SM}}} \simeq\left(\kappa_{t}+\kappa_{g}\right)^{2}\left(1-\frac{7}{15} \frac{\kappa_{g}}{\kappa_{t}+\kappa_{g}} \frac{m_{h}^{2}}{4 m_{t}^{2}}\right) \simeq\left(\kappa_{t}+\kappa_{g}\right)^{2}
$$

Higgs EFT

$$
\begin{aligned}
& \mathcal{O}_{t}=\frac{y_{t}}{v^{2}}|H|^{2} \bar{Q}_{L} \tilde{H} t_{R}, \quad \mathcal{O}_{g}=\frac{\alpha_{s}}{12 \pi v^{2}}|H|^{2} G_{\mu \nu}^{a} G^{a \mu \nu}, \\
& \mathcal{L}=\mathcal{L}_{S M}+\left(1-c_{t}\right) \mathcal{O}_{t}+k_{g} \mathcal{O}_{g}, \\
& \mu_{\text {incl }}\left(c_{t}, k_{g}\right)=\frac{\sigma_{\text {incl }}^{\mathrm{BSM}}\left(c_{t}, k_{g}\right)}{\sigma_{\text {incl }}^{S \mathrm{SM}}}=\left(c_{t}+k_{g}\right)^{2}
\end{aligned}
$$

Degeneracy ‘long-distance’ vs ‘short-distance’

Higgs EFT

$$
\begin{array}{ll}
\mathcal{O}_{t}=\frac{y_{t}}{v^{2}}|H|^{2} \bar{Q}_{L} \tilde{H} t_{R}, \quad \mathcal{O}_{g}=\frac{\alpha_{s}}{12 \pi v^{2}}|H|^{2} G_{\mu \nu}^{a} G^{a \mu \nu}, \\
\mathcal{L}=\mathcal{L}_{S M}+\left(1-c_{t}\right) \mathcal{O}_{t}+k_{g} \mathcal{O}_{g} . & \begin{array}{c}
\text { top-partners in } \\
\text { composite Higgs } \\
\Delta c_{t}=\Delta c_{g}=\frac{9}{4} \Delta c_{\gamma}
\end{array} \\
\mu_{\text {incl }}\left(c_{t}, k_{g}\right)=\frac{\sigma_{\text {incl }}^{\mathrm{BSM}}\left(c_{t}, k_{g}\right)}{\sigma_{\text {incl }}^{\text {SM }}}=\left(c_{t}+k_{g}\right)^{2}
\end{array}
$$

Degeneracy ‘long-distance’ vs ‘short-distance’

fermionic top-partners in composite Higgs models exactly lead to $\Delta c_{t}=\Delta c_{g}=\frac{9}{4} \Delta c_{\gamma}$.
having access to ht〒 final state will resolve this degeneracy but notoriously difficult channel
$14 \%-4 \%$ @ $L H C_{300}^{14}-L H C_{3000}^{14}$ vs $10 \%-4 \%$ @ ILC $C_{500}^{500}-$ ILC $_{1000}^{1000}$

$\sigma(p p \rightarrow H+X)_{\text {inclusive }}$

Does not resolve short-distance physics

$m_{H}(\mathrm{GeV})$	$\frac{\sigma_{N L O}\left(m_{t}\right)}{\sigma_{N L O}\left(m_{t} \rightarrow \infty\right)}$	$\frac{\sigma_{N L O}\left(m_{t}, m_{b}\right)}{\sigma_{N L O}\left(m_{t} \rightarrow \infty\right)}$
125	1.061	0.988
150	1.093	1.028
200	1.185	1.134
e.g. $\mid 306.458 ।$		

Beyond current observables

Resolve the loop, recoil against hard jet

IR

$$
\hat{\sigma}_{p_{T}^{\text {min }}}\left(c_{t}, k_{g}, \hat{s}\right) \propto \frac{1}{16 \pi \hat{s}^{2}} \int_{t_{\text {min }}}^{t_{\text {max }}} \mathrm{d} t\left|c_{t} \mathcal{M}_{I R}+k_{g} \mathcal{M}_{U V}\right|^{2}
$$

UV
9 Mnsnonn-mororon g
g romororn $\cdots, \ldots .{ }_{h}$

$$
t_{\text {min }}^{\substack{\text { max }}}=\frac{1}{2}\left(m_{h}^{2}-\hat{s} \mp \sqrt{m_{h}^{4}-2 \hat{s}\left(m_{h}^{2}+2\left(p_{T}^{\text {min }}\right)^{2}\right)+\hat{s}^{2}}\right)
$$

$$
\begin{aligned}
& \frac{\sigma_{p_{T}^{\text {min }}}\left(c_{t}, k_{g}\right)}{\sigma_{p_{T}^{\text {min }}}^{S M}}=\left(c_{t}+k_{g}\right)^{2}+\delta c_{t} k_{g}+\kappa k_{g}^{2} \\
& \sigma_{p_{T}^{\text {min }}}\left(c_{t}, k_{g}\right)=\int_{s_{\text {min }} / s}^{1} \mathrm{~d} \tau \mathcal{L}_{\text {part }}(\tau) \hat{\sigma}_{p_{T}^{\text {min }}}\left(c_{t}, k_{g}, \tau s\right)
\end{aligned}
$$

$$
\tilde{\kappa}_{g} \frac{\alpha_{s}}{12 \pi} \frac{h}{v} G_{\mu \nu}^{a} \widetilde{G}^{\mu \nu a} \quad \imath \frac{m_{t}}{v} \bar{u} \gamma_{5} u A^{0}
$$

$\frac{\sigma_{p_{T}^{\text {min }}}\left(c_{t}, k_{g}\right)}{\sigma_{p_{T}^{\text {min }}}^{S M}}=\left(c_{t}+k_{g}\right)^{2}+\delta c_{t} k_{g}+\kappa k_{g}^{2} \quad$ add CPV coupling

$\sqrt{s}[\mathrm{TeV}]$	$p_{T}^{\min }[\mathrm{GeV}]$	$\sigma_{p_{T}^{\text {min }}}^{\text {SM }}[\mathrm{fb}]$	δ	ϵ	$g g, q g$ [\%]	$\tilde{\gamma}$	$\tilde{\delta}$	$\tilde{\epsilon}$
14	100	2200	0.016	0.023	67, 31	2.3	-3.8	2.3
	150	830	0.069	0.13	66, 32	2.3	-4.0	2.5
	200	350	0.20	0.31	65, 34	2.3	-4.4	2.9
	250	160	0.39	0.56	63, 36	2.3	-4.9	3.5
	300	75	0.61	0.89	61, 38	2.3	-5.7	4.2
	350	38	0.86	1.3	58, 41	2.3	-6.6	5.1
	400	20	1.1	1.8	56, 43	2.3	-7.6	6.2
	450	11	1.4	2.3	54, 45	2.4	-8.9	7.4
	500	6.3	1.7	2.9	52, 47	2.4	-10	8.8
	550	3.7	2.0	3.6	50, 49	2.4	-12	10
	600	2.2	2.3	4.4	48, 51	2.4	-14	12
	650	1.4	2.6	5.2	46, 53	2.4	-16	14
	700	0.87	3.0	6.2	45, 54	2.4	-18	16
	750	0.56	3.3	7.2	43, 56	2.4	-20	18
	800	0.37	3.7	8.4	42,57	2.5	-23	21
100	500	970	1.8	3.1	72, 28			
	2000	1.0	14	78	56, 43			

$\frac{\sigma_{p_{T}^{\text {min }}}}{\sigma_{p_{T}^{\text {min }}}^{S M}}=\tilde{\gamma} \tilde{\kappa}_{t}^{2}+\tilde{\delta} \tilde{\kappa}_{t} \tilde{\kappa}_{g}+\tilde{\epsilon} \tilde{\kappa}_{g}^{2}$

рт dependence resolves CP odd couplings

Top partner models

- Supersymmetry (stops)
- Composite Higgs (MCHM5)

Composite pGB Higgs

$$
c_{t}+k_{g}=v\left(\frac{\partial}{\partial h} \log \operatorname{det} \mathcal{M}_{t}(h)\right)_{\langle h\rangle}
$$

MCHM_{5}

$$
c_{t}+k_{g}=(1-2 \xi) / \sqrt{1-\xi} \quad \sqrt{\xi}=v / f
$$

see e.g. Low Vichi \& Azatov, Galloway
independent of top partner spectrum and couplings

high-pt tail "sees" the top partners that are missed by the inclusive rate

Supersymmetry

$$
\begin{aligned}
m_{h}^{2}= & m_{Z}^{2} \cos ^{2} \beta+\frac{3 y_{t}^{2} m_{t}^{2}}{(4 \pi)^{2}}\left[\log \left(\frac{m_{S}^{2}}{m_{t}^{2}}\right)+X_{t}^{2}\left(1-\frac{X_{t}^{2}}{12}\right)\right] \\
& \frac{\Gamma(g g \rightarrow h)}{\Gamma(g g \rightarrow h)_{S M}}=\left(1+\Delta_{t}\right)^{2}, \\
\Delta_{t} \approx & \frac{m_{t}^{2}}{4}\left(\frac{1}{m_{\tilde{t}_{1}}^{2}}+\frac{1}{m_{\tilde{t}_{2}}^{2}}-\frac{A_{t}-\frac{\mu}{\tan \beta}}{m_{\tilde{t}_{1}}^{2} m_{\tilde{t}_{2}}^{2}}\right)
\end{aligned}
$$

flat direction

flat direction

Real soft masses

Charge-color breaking vacua

$$
A_{t}^{2}+3 \mu^{2}>a \cdot\left(m_{\tilde{t}_{1}}^{2}+m_{\tilde{t}_{2}}^{2}\right) \quad h A_{t} \tilde{t}_{L} \tilde{t}_{R}^{*}
$$

Break flat direction

P_{T} dependent shift mostly from A_{t} independent diagrams

Ratio of cross-sections

$$
\mathcal{R}\left(c_{t}, k_{g}\right)=\frac{\sigma_{650 \mathrm{GeV}}}{\sigma_{150 \mathrm{GeV}}}\left(c_{t}, k_{g}\right) \frac{K_{650}}{K_{150}}
$$

reduced th-uncertainty (estimate using MCFM, LO \rightarrow NLO large m_{t})

Fit assuming estimated stat. \& sys. errors

$$
\begin{aligned}
\chi^{2}\left(c_{t}, k_{g}\right) & =\left(\frac{\mathcal{R}\left(c_{t}, k_{g}\right)-\mathcal{R}^{*}}{\delta \mathcal{R}}\right)^{2}+\left(\frac{\mu_{\mathrm{incl}}\left(c_{t}, k_{g}\right)-\mu_{\mathrm{incl}}^{*}}{\delta \mu_{\mathrm{incl}}}\right)^{2} \\
\delta \mathcal{R} & =\mathcal{R}^{*} \sqrt{\frac{1}{N_{150 \mathrm{GeV}}}+\frac{1}{N_{650 \mathrm{GeV}}}+2 \cdot 0.1^{2}}
\end{aligned}
$$

high pt tail discriminates short and long distance physics contribution to $g g \rightarrow h$

$$
\sqrt{s}=14 \mathrm{TeV}, \int d t \mathcal{L}=3 \mathrm{ab}^{-1}, p_{T}>650 \mathrm{GeV}
$$

(partonic analysis in the boosted "ditau-jets" channel)

- $\mathrm{NLO}_{m t}$ recently calculated (1410.5806), uncertainty still unknown, will it spoil the sensitivity ?
- Realistic study with backgrounds at reco-level

(HL)-LHC14

try to resolve worst case: inclusive cross-section = SM

BOOSTED $H \rightarrow 2 \ell+\boldsymbol{p}_{T}$

M. Schlaffer, M. Spannowsky, M. Takeuchi, AW

$$
\begin{aligned}
& H \rightarrow W W^{*} \rightarrow 2 \ell+2 \downarrow \\
& H \rightarrow \tau_{\ell} \tau_{\ell}
\end{aligned}
$$

Collinear mass

$$
\mathbf{p}_{T}=\mathbf{p}_{T, \nu_{1}, \mathrm{col}}+\mathbf{p}_{T, \nu_{2}, \mathrm{col}}: \quad \mathbf{p}_{\nu_{1}, \mathrm{col}}=\alpha_{1} \mathbf{p}_{\ell_{1}}, \quad \mathbf{p}_{\nu_{2}, \mathrm{col}}=\alpha_{2} \mathbf{p}_{\ell_{2}}
$$

$$
p_{\mathrm{col}}=p_{\nu_{1}, \mathrm{col}}+p_{\nu_{2}, \mathrm{col}}+p_{\ell_{1}}+p_{\ell_{2}}, \quad M_{\mathrm{col}}^{2}=p_{\mathrm{col}}^{2}
$$

Cut flow for H -> tau tau

Event rate [fb]	$H \rightarrow \tau \tau$	$H \rightarrow W W^{*}$	$W_{\ell} W_{\ell}+$ jets	$Z_{\rightarrow \tau \tau}+$ jets	$t_{\ell} \bar{t}_{\ell}+$ jets	S / B	S / \sqrt{B}
0. Nominal cross section	3149.779	10719.207	580.000	$1.01 \cdot 10^{4}$	$1.02 \cdot 10^{5}$	-	-
1. $n_{\ell}=2$, opposite-sign	118.043	323.531	195.033	347.516	$3.72 \cdot 10^{4}$	-	-
2. $m_{\ell \ell}>20 \mathrm{GeV}$	117.733	264.723	189.522	315.201	$3.57 \cdot 10^{4}$	-	-
3. $p_{T, H}^{\text {rec }}>200 \mathrm{GeV}$	1.987	3.834	91.273	104.434	$1.28 \cdot 10^{3}$	0.004	2.62
4. $n_{j}^{\text {fat }}=1\left(p_{T, j}>200 \mathrm{GeV}\right)$	0.957	1.858	50.443	58.810	395.602	0.006	2.17
5. $n_{b}=0$	0.940	1.825	48.855	57.068	105.851	0.01	3.29
6. \boldsymbol{p}_{T} inside the two leptons	0.923	0.533	20.215	55.551	44.050	0.01	2.30
7. $m_{\ell \ell}<70 \mathrm{GeV}$	0.796	0.490	3.860	53.985	8.511	0.02	2.73
8. $\left\|M_{\text {col }}-m_{H}\right\|<10 \mathrm{GeV}$	0.749	0.046	0.298	1.019	0.758	0.38	9.56
$p_{T, H}^{\text {rec }}>300 \mathrm{GeV}$	0.234	0.012	0.115	0.343	0.166	0.39	5.40
$p_{T, H}^{\text {rec }}>400 \mathrm{GeV}$	0.068	0.006	0.042	0.106	0.049	0.38	2.88
$p_{T, H}^{\text {rec }}>500 \mathrm{GeV}$	0.021	0.001	0.014	0.038	0.010	0.36	1.55
$p_{T, H}^{\text {rec }}>600 \mathrm{GeV}$	0.008	0.001	0.006	0.014	0.005	0.32	0.89

Example: $\mathrm{kg}_{\mathrm{g}}=0.5$

Boosted Higgs breaks degeneracy!

Conclusion

- Boosted gluon fusion gives additional insights
- Resolves loop dynamics, complementary to ttH and off-shell Higgs (H* -> ZZ->4I)
- Breaks degeneracies in EFT, Susy and MCHM
- $\mathrm{NLO}_{m t}$ desirable

pdf uncertainties

PDF Uncertainty parton lumis - LHC 8 TeV - Ratio to NNPDF2.3 NNLO

Figure 4: Ratio of the boosted Higgs cross section computed within the effective theory to the exact cross section computed retaining the complete form factors, versus the mass of the lightest top partner, for a sample set of points in the parameter space of MCHM_{5}. A transverse momentum cut $p_{T}>650 \mathrm{GeV}$ is applied. The left panel shows the total cross section $p p \rightarrow h+$ jet, whereas the right panel shows the three partonic channels $g g, q g, q \bar{q} \rightarrow h+$ jet individually.

