DARK MATTER AND CONTINUOUS FLAVOR SYMMETRIES

JURE ZUPAN
U. OF CINCINNATI

based on Kamenik, JZ, 1107.0623 Bishara, JZ, 1408.3852 Bishara, Greljo, Kamenik, Stamou, JZ, to appear

Naturalness 2014 -satellite worskhop, Nov 12, 2014

THE AIM/MOTIVATION

- SM has a very nontrivial flavor structure
 - hierarchical fermion masses
 - small flavor violation in quark sector, large in lepton sector
- can this have implications for dark matter searches?

OUTLINE

- three examples
- all based on continuous flavor symmetries in the quark sector
 - dark matter stability
 - metastable asymmetric DM
 - gauged flavor model+DM
 - flavor breaking and DM searches
 - mono-tops at the LHC

ASYMMETRIC DM & FLAVOR

ASYMMETRIC DM

• asymmetric DM addresses the coincidence problem

Nussinov 1985; Barr 1991; Kaplan 1992; Kaplan, Luty, Zurek, 0901.4117; +many refs.

- Ω_{DM} ~ $5~\Omega_{baryon}$
- is there a link between the two abundances?

ASYMMETRIC DM

cosmological history of the ADM

$$T\gg T_{\text{EWPT}}$$
 $B\longleftrightarrow \Delta\chi$ Asymmetric operators in equilibrium. Baryon asymmetry transferred to DM.
$$T_f>T_{\text{EWPT}}$$
 $B\longleftrightarrow \Delta\chi$ Asymmetric operators freezeout. DM number separately conserved.
$$T\lesssim m_\chi \qquad \chi\bar\chi \longrightarrow \text{SM}, \, \gamma_d\gamma_d, \, \dots$$
 Symmetric component of DM is efficiently annihilated away. from a slide by F. Bishara, talk at Notre Dame

 note: more complicated cosmological histories possible

see e.g., Falkowski, Ruderman, Volansky, 1101.4936

OUR AIM

Bishara, JZ, 1408.3852

- for a subset of ADM models
 - the Z_2 that ensures the stability is accidental and approximate
- as a result
 - DM is metastable
 - decay times potentially close to its present observational bound $\tau \ge 10^{26} s$
- the mediators can be below TeV
 - realistic flavor structure essential

DM MASS

• the relation Ω_{DM} ~5.4 Ω_{baryon} fixes the DM mass

Bishara, JZ, 1408.3852

assuming SM visible sector

$$m_{\chi} = m_p \frac{\Omega_{\chi}}{\Omega_B} \frac{B}{B - L} \frac{B - L}{\Delta \chi} = (12.5 \pm 0.8) \text{GeV} \frac{1}{(B - L)_{\chi}^{\text{sum}}}$$

$$(B-L)_{\chi}^{\text{sum}} \equiv \sum_{i} \hat{g}_{\chi}^{i} (B-L)_{\chi}^{i}$$

• for instance, for a Dirac fermion $g_{\chi}=2$

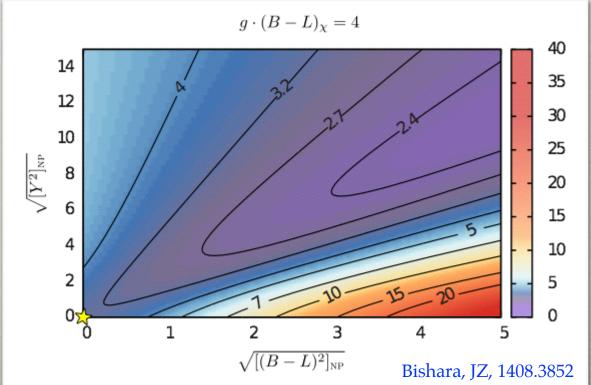
$$m_{\chi} = (6.2 \pm 0.4) \text{GeV} \frac{1}{(B-L)_{\chi}},$$

$$m_{\chi} = \{6.2, 3.1, 2.1\} \text{GeV}, \quad \text{for} \quad (B - L)_{\chi} = \{1, 2, 3\},$$

- note: for *B*=3 DM cannot decay
 - accidental Z_2 (which is exact if B is exact)

ADM MASS

- if visible sector more complicated
 - the relation to DM mass more general
 - e.g. for B=2 complex scalar



ASYMMETRIC DM

cosmological history of the ADM

$$T\gg T_{\text{EWPT}}$$
 $B\longleftrightarrow \Delta\chi$ Asymmetric operators in equilibrium. Baryon asymmetry transferred to DM.
$$T_f>T_{\text{EWPT}}$$
 $B\longleftrightarrow \Delta\chi$ Asymmetric operators freezeout. DM number separately conserved.
$$T\lesssim m_\chi \qquad \chi\bar\chi \longrightarrow \text{SM}, \, \gamma_d\gamma_d, \, \dots$$
 Symmetric component of DM is efficiently annihilated away.

- symmetric annihilation needs to be efficient
 - have nothing new to say, a number of scenarios proposed

FREEZE-OUT OF ASYMMETRIC INTERACTIONS

• asymmetric operators, schematic form for B=2

$$\mathcal{O}_{ ext{asymm.}} \sim rac{C}{\Lambda^6} \chi(qq)^3,$$

- leads to asymmetric $2\rightarrow 5$ interactions in the early universe
 - the freeze-out should be above EW phase transition
 - gives lower bounds:
 - Λ>730 GeV (Froggatt-Nielsen flavor model)
 - Λ>400 GeV (MFV breaking)
- naively expect that asymmetric mediators not much heavier
 - then self-consistent framework (need small m_{χ} for metastable DM)
 - at very high Λ the direct relation between m_{χ} and m_p is lost
 - however, easy to think of models with very massive mediators

DM DECAY TIME

 the asymmetric operators also lead to DM decays

$$\mathcal{O}_{
m asymm.} \sim rac{C}{\Lambda^6} \chi(qq)^3,$$

- what is the corresponding decay time
 - MFV flavor model
 - Froggatt-Nielsen model

MINIMAL FLAVOR VIOLATION

- in the SM global flavor symmetry U(3)⁵ broken by Yukawas
- also the minimal breaking that needs to be present in the presence of NP
- Minimal Flavor Assumption (MFV):
 - the SM Yukawas are also the only flavor breaking

MINIMAL FLAVOR VIOLATION

D'Ambrosio, Giudice, Isidori, Strumia, 2002

• quark sector formally inv. under $U(3)_Q \otimes U(3)_u \otimes U(3)_d$, if the Yukawas promoted to spurions

$$Y'_{u,d} = V_Q Y_{u,d} V_{u,d}^{\dagger}$$

- use spurion analysis to construct NP opers./contribs.
- constrains possible FV structures, e.g. (V-A)⊗(V-A)
 - allowed: $\bar{Q}(Y_uY_u^{\dagger})^nQ$
 - not allowed: $QY_d^{\dagger}(Y_uY_u^{\dagger})^nQ$
- it gives SM like suppression of FCNC's since

$$(Y_u Y_u^{\dagger})^n \sim (Y_u Y_u^{\dagger}) = V_{\text{CKM}} \text{diag}(0, 0, 1) V_{\text{CKM}}^{\dagger}$$

• for (V-A) bilinear $\bar{b}_L s_L$ the suppression $\sim V_{tb} V_{ts}^*$

ADM AND MFV

- take as an example B=1 fermonic ADM
 - two types of asymm. operators

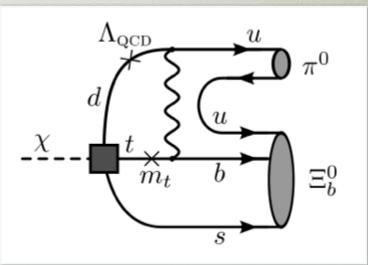
$$\begin{split} \mathcal{O}_{1}^{(B=1)} = & \left(\chi \, u_{\alpha}^{c} Y_{U}^{\dagger} Y_{D}\right)_{K} \left(d_{N\beta}^{c} d_{M\gamma}^{c}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma} \\ & \rightarrow \left(\chi \, u_{\text{MASS}}^{c} Y_{U}^{\text{diag}\dagger} V_{\text{CKM}}^{\dagger} Y_{D}^{\text{diag}}\right)_{K\alpha} \left([d_{\text{MASS}}^{c}]_{N\beta} \, [d_{\text{MASS}}^{c}]_{M\gamma}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma}, \\ \mathcal{O}_{2}^{(B=1)} = & \left(\chi \, q_{K\alpha i}^{*}\right) \left([d_{\beta}^{c} Y_{D}^{\dagger}]_{N} q_{M\gamma j}^{*}\right) \epsilon^{ij} \epsilon^{KNM} \epsilon^{\alpha\beta\gamma} \\ & \rightarrow \left(\chi \, u_{\text{MASS}}^{*} V_{\text{CKM}}^{\dagger}\right)_{K\alpha} \left([d_{\text{MASS}}^{c} Y_{D}^{\text{diag}\dagger}]_{N\beta} [d_{\text{MASS}}^{*}]_{M\gamma}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma}, \end{split}$$

• from here an NDA estimate for decay width

$$\begin{split} &\Gamma_{\chi}^{(1)} \sim \frac{(y_t y_b)^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \left(\frac{1}{16\pi^2} \frac{m_t \Lambda_{\rm QCD}}{m_W^2}\right)^2 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} {\rm GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.0 \cdot 10^6 {\rm TeV}}{\Lambda}\right)^4, \\ &\Gamma_{\chi}^{(2)} \sim \frac{|y_b V_{ub}|^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} {\rm GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.3 \cdot 10^7 {\rm TeV}}{\Lambda}\right)^4, \end{split}$$

ADM ANI

- take as an example B=1 fer
 - two types of asymm. op



$$\begin{split} \mathcal{O}_{1}^{(B=1)} = & \left(\chi \, u_{\alpha}^{c} Y_{U}^{\dagger} Y_{D}\right)_{K} \left(d_{N\beta}^{c} d_{M\gamma}^{c}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma} \\ & \rightarrow \left(\chi \, u_{\text{MASS}}^{c} Y_{U}^{\text{diag}\dagger} V_{\text{CKM}}^{\dagger} Y_{D}^{\text{diag}}\right)_{K\alpha} \left([d_{\text{MASS}}^{c}]_{N\beta} \, [d_{\text{MASS}}^{c}]_{M\gamma}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma}, \\ \mathcal{O}_{2}^{(B=1)} = & \left(\chi \, q_{K\alpha i}^{*}\right) \left([d_{\beta}^{c} Y_{D}^{\dagger}]_{N} q_{M\gamma j}^{*}\right) \epsilon^{ij} \epsilon^{KNM} \epsilon^{\alpha\beta\gamma} \\ & \rightarrow \left(\chi \, u_{\text{MASS}}^{*} V_{\text{CKM}}^{\dagger}\right)_{K\alpha} \left([d_{\text{MASS}}^{c} Y_{D}^{\text{diag}\dagger}]_{N\beta} [d_{\text{MASS}}^{*}]_{M\gamma}\right) \epsilon^{KNM} \epsilon^{\alpha\beta\gamma}, \end{split}$$

• from here an NDA estimate for decay width

$$\begin{split} &\Gamma_{\chi}^{(1)} \sim \frac{(y_t y_b)^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \left(\frac{1}{16\pi^2} \frac{m_t \Lambda_{\rm QCD}}{m_W^2}\right)^2 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} {\rm GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.0 \cdot 10^6 {\rm TeV}}{\Lambda}\right)^4, \\ &\Gamma_{\chi}^{(2)} \sim \frac{|y_b V_{ub}|^2}{8\pi} \left(\frac{m_{\chi}}{\Lambda}\right)^4 \frac{m_{\chi}}{16\pi^2} = 6.6 \cdot 10^{-51} {\rm GeV} \left(\frac{y_b}{0.024}\right)^2 \left(\frac{4.3 \cdot 10^7 {\rm TeV}}{\Lambda}\right)^4, \end{split}$$

FN MODELS

- U(1) Froggatt-Nielsen (FN) models of spontaneously broken horizontal symmetries
 - quarks carry horizontal charges $H(q_i)$, ...
- the two B=1 operators

$$\begin{split} \mathcal{O}_{1}^{(B=1)} &= (\chi \, d_{K}^{c}) \, (u_{N}^{c} d_{M}^{c}) \rightarrow (\chi \, [d_{\text{MASS}}^{c}]_{K}) \, ([u_{\text{MASS}}^{c}]_{N} [d_{\text{MASS}}^{c}]_{M}), \\ \mathcal{O}_{2}^{(B=1)} &= (\chi \, q_{Ki}^{*}) (d_{N}^{c} q_{Mj}^{*}) \epsilon^{ij} \rightarrow (\chi \, [u_{\text{MASS}}^{*}]_{K}) \, ([d_{\text{MASS}}^{c}]_{N} [d_{\text{MASS}}^{*}]_{M}) \,, \end{split}$$

$$\mathcal{L} = \sum_{i} \frac{C_i}{\Lambda^{(D_i - 4)}} \mathcal{O}_i.$$

have Wilson coefficients

$$C_1 \sim \lambda^{|H(d_K^c) + H(u_N^c) + H(d_M^c)|}, \qquad C_2 \sim \lambda^{|-H(q_K) + H(d_N^c) - H(q_M)|}.$$

- expansion parameters $\lambda \sim 0.2$
- we use the phenomenologically viable assignments:

Leurer, Nir, Seiberg hep-ph/9212278; hep-ph/9310320

$$H(q, d^{c}, u^{c}) \Rightarrow \begin{array}{c} q \\ d^{c} \\ u^{c} \end{array} \begin{pmatrix} 3 & 2 & 0 \\ 3 & 2 & 2 \\ 3 & 1 & 0 \end{pmatrix},$$

ADM DECAY TIMES

• the suppression scales that give $\tau = 10^{26}s$

	ADM	model		MFV			FN	
B	Dim.	$m_\chi~[{\rm GeV}]$	decay	τ [s]	$\Lambda~[{\rm TeV}]$	decay	τ [s]	$\Lambda~[{\rm TeV}]$
1	6	6.2	$\chi \to bus$	10^{26}	4.0×10^6	$\chi \to bus$	10^{26}	8.1×10^8
2	10	3.1	$\chi \to udsuds$	10^{26}	0.63	$\chi \to udsuds$	10^{26}	2.5
3	15	2.1	forbidden	∞	_	forbidden	∞	_

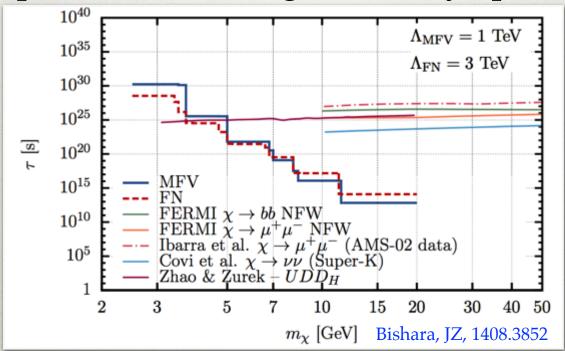
ADM DECAY TIMES

• the suppression scales that give $\tau = 10^{26}s$

	ADM model		MFV		FN			
B	Dim.	$m_\chi~[{\rm GeV}]$	decay	τ [s]	$\Lambda~[{\rm TeV}]$	decay	τ [s]	$\Lambda~[{\rm TeV}]$
1	6	6.2				$\chi \to bus$	10^{26}	8.1×10^{8}
2	10	3.1	$\chi \to udsuds$	10^{26}		$\chi \to udsuds$	10^{26}	2.5
3	15	2.1	forbidden	∞		forbidden	∞	

INDIRECT DETECTION CONSTRAINTS

• the most relevant indirect constraints from antiproton flux and gamma ray spectra



• for 3.1GeV B=2 DM the bounds are

$$\Lambda_{\rm MFV}\gtrsim 0.49~{\rm TeV}$$

$$\Lambda_{\rm FN} \gtrsim 1.9 {
m TeV},$$

MEDIATOR MASS

- these bounds imply for the mass of asymmetric mediators
 - MFV: m_{mediator} >490 (210, 90)GeV
 - FN: m_{mediator} >1900 (830, 360)GeV
 - if asymmetric operators are generated at tree(1-loop,2-loop)-level
- these mediators can be searched for at the LHC
- note: without flavor structure the bound would be Λ >7.3 TeV
 - out of LHC reach

MEDIATOR MODELS

- for LHC pheno. consider two toy-model completions
- MFV model with scalar mediators

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	G_F	$U(1)_{B-L}$
ϕ_L	$\bar{3}$	1	1/3	$({f 6},{f 1},{f 1})$	2/3
$arphi_L$	6	1	1/3	$({\bf \bar{3},1,1})$	2/3
ϕ_R	$ar{3}$	1	-2/3	$({\bf \bar{3},1,1})$	2/3

FN model with fermionic and scalar mediators

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{B-L}$
ϕ	$ar{3}$	1	1/3	2/3
ψ	1	1	0	1

	$T\gg T_{ ext{\tiny EWPT}}$	$B \longleftrightarrow \Delta \chi$	Asymmetric operators in equilibrium. Baryon asymmetry transferred to DM.
• for	$T_f > T_{ m EWPT}$	$B \longleftrightarrow \Delta \chi$	Asymmetric operators freezeout. DM number separately conserved.
• MI	$T \lesssim m_{\chi}$	$\chi \bar{\chi} \longrightarrow SM, \gamma_d \gamma_d, \dots$	Symmetric component of DM is efficiently annihilated away.

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	G_F	$U(1)_{B-L}$
ϕ_L	$\bar{3}$	1	1/3	$({f 6},{f 1},{f 1})$	2/3
$arphi_L$	6	1	1/3	$({\bf \bar{3},1,1})$	2/3
ϕ_R	$\bar{3}$	1	-2/3	$({f ar 3},{f 1},{f 1})$	2/3

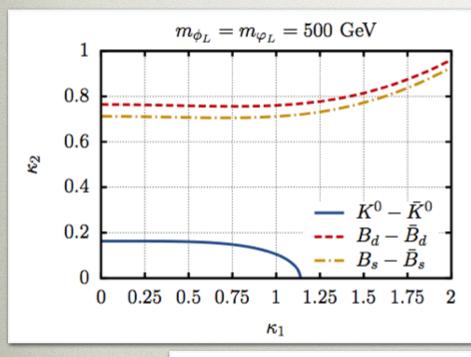
• FN model with fermionic and scalar mediators

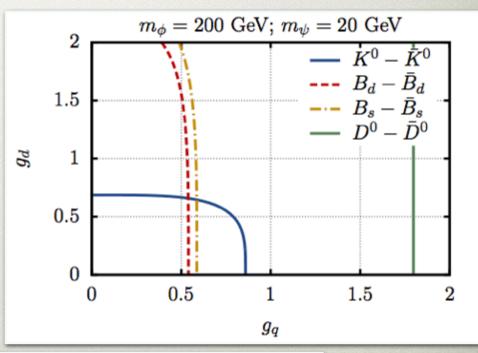
Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{B-L}$
ϕ	$ar{3}$	1	1/3	2/3
ψ	1	1	0	1

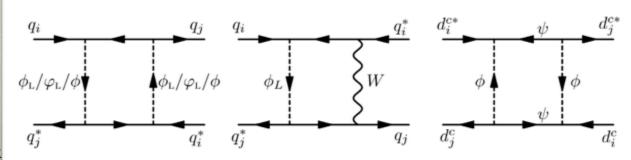
ons

FLAVOR BOUNDS

typical FCNC bounds





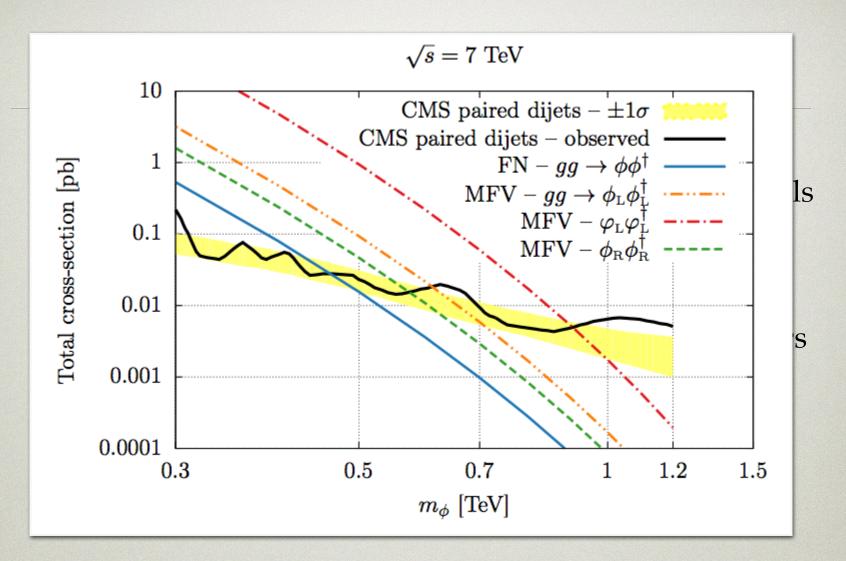


J. Zupan Dark

12, 2014

LHC SIGNATURES

- colored mediators inevitable: present in both toy models
 - can be searched for at the LHC through pair production or single production
- the decay channels depend on flavor quantum numbers of scalars
 - $\phi \rightarrow tb$, $\phi' \rightarrow bj$, $\phi'' \rightarrow jj$
 - a combined analysis of all three modes would be desirable
- as a simplified rule of thumb compare with CMS paired dijet-resonance search



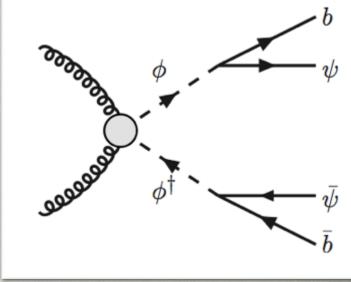
 as a simplified rule of thumb compare with CMS paired dijet-resonance search

LHC SIGNATURES

• in corners of parameter space other signatures possible

 for instance, allowing for a hierarchy of couplings

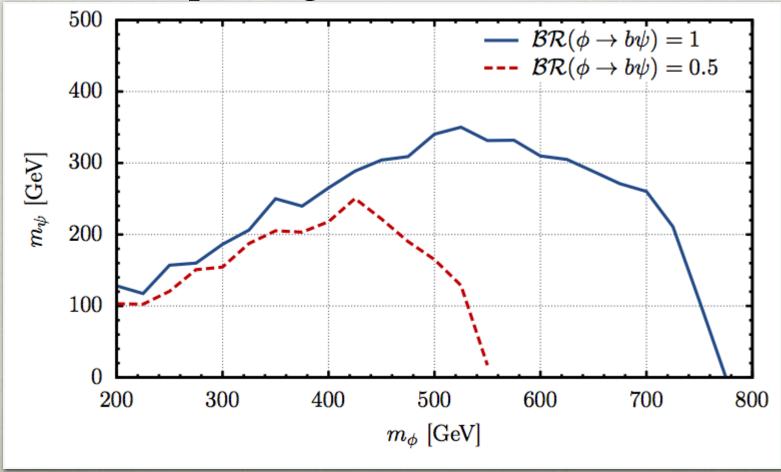
• $\phi \rightarrow \bar{b}\psi$ may dominate, and ψ escapes detection



• the signal is $b\bar{b}+MET$, sbottom searches apply

LHC SIGNATURES

reinterpreting CMS sbottom search



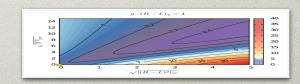
DM STABILITY & CONTINUOUS SYMMETRIES

SM FLAVOR GROUP

- the breaking of flavor group may leave an exact discrete group exact
 - this is true in the SM
- if zero Yukawas large flavor group: $U(3)_{O} \times U(3)_{U} \times U(3)_{D} \times U(3)_{L} \times U(3)_{E}$
- we consider quark subgroup, SU(3) factors $G_F = SU(3)_O \times SU(3)_U \times SU(3)_D$

$$Q_L \sim (3, 1, 1)$$

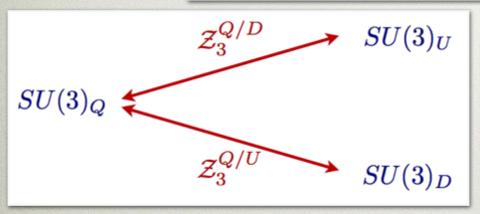
$$Q_L \sim (3,1,1)$$
 $U_R^c \sim (1,\bar{3},1)$



SM FLAVOR BREAKING

• the SM Yukawas break $G_F \rightarrow Z_3^{QUD}$

$$\mathcal{L}_Y = \bar{Q}_L \tilde{H} y_u U_R + \bar{Q}_L H y_d D_R + \mathrm{h.c.}$$
 .



$$\mathcal{Z}_3^{QUD}$$

$$\{U_R, D_R, Q_L\} \to e^{i2\pi/3} \{U_R, D_R, Q_L\}$$

- Z_3^{QUD} is an accidental symmetry of the SM
 - preserved in presence of any MFV NP
 - in the SM is a subgroup of $U(1)_B$ (not in general NP)

DARK MATTER STABILITY

- all SM fields: neutral under diag. subgroup $Z_3^{\chi} \subset Z_3^{QUD} \times Z_3^c$
- color neutral dark matter charged under Z_3^{χ} is automatically stable
 - suitable G_F representations have nonzero flavor triality

$$\chi \sim (n_Q, m_Q)_Q \times (n_u, m_u)_{u_R} \times (n_d, m_d)_{d_R}$$

$$(n-m) \mod 3 \neq 0.$$

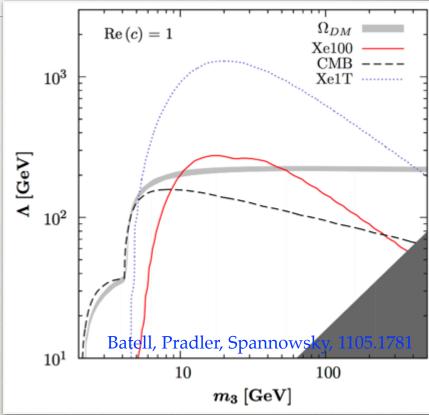
$$m \equiv m_Q + m_u + m_d.$$

$$n \equiv n_Q + n_u + n_d.$$

- in contrast the flavor breaking vevs should have zero flavor triality: $(n_{vev} m_{vev}) mod 3 = 0$ so that Z_3^{χ} unbroken
 - an example: SM Yukawas which are in bi-fundamental

MFV DM

- an example is DM with MFV interactions
 - EFT analysis
 - structure of DM-SM interactions in MFV DM dictated by MFV power counting
 - example: SM singlet $S \sim (3, 1, 1)_{GF}$
 - for inverted spectrum annihilation dominated by $\chi_3 \chi_3 \rightarrow b\bar{b}$
- does it have to be MFV?
- dynamical origin of interactions?
- will show a non-MFV example



see also

Lopez Honorez, Merlo, 1303.1087

Batell, Lin, Wang, 1309.4462

Agrawal, Blanke & Gemmler, 1405.6709 Bishara, Greljo, Kamenik, Stamou, JZ, to appear

not being in EFT limit will be numerically beneficial

GENERAL FLAVORED DM

Bishara, Greljo, Kamenik, Stamou, JZ, to appear

- basic requirement for flavored DM stable due to Z_3^{QUD}
 - G_F is a good symmetry in UV
 - broken by spurions ϕ_{vev} in representations with zero flavor triality
 - $(n_{vev} m_{vev}) \mod 3 = 0$
 - e.g., any vev in adjoint or bi-fundamental ok
 - stable color singlet(s) in representations with nonzero flavor triality
 - $(n_{\chi}-m_{\chi}) \mod 3 \neq 0$

GAUGED FLAVOR SYMMETRY

fully gauged G_F

Grinstein, Redi, Villadoro, 1009.2049 Bishara, Greljo, Kamenik, Stamou, JZ, to appear

spontaneously broken by vevs

$$Y_u \sim (\bar{3}, 3, 1)$$

$$Y_u \sim (\bar{3}, 3, 1)$$
 $Y_d \sim (\bar{3}, 1, 3)$

to ensure anomaly cancellation a set of chiral fermions

$$\Psi_{dL} \sim (1, 1, 3)$$

$$\Psi_{dL} \sim (1,1,3)$$
 $\Psi_{uL} \sim (1,3,1)$ $\Psi_{dR}^c \sim (\bar{3},1,1)$ $\Psi_{uR}^c \sim (\bar{3},1,1)$

$$\Psi_{dR}^c \sim (\bar{3}, 1, 1)$$

$$\Psi_{uR}^c \sim (\bar{3}, 1, 1)$$

mass term (after EWSB and flavor breaking)

$$\mathcal{L}_{\text{mass}} \supset \lambda_u \bar{Q}_L \tilde{H} \Psi_{uR} + \lambda'_u \bar{\Psi}_{uL} Y_u \Psi_{uR} + M_u \bar{\Psi}_{uL} U_R$$
$$+ \lambda_d \bar{Q}_L H \Psi_{dR} + \lambda'_d \bar{\Psi}_{dL} Y_d \Psi_{dR} + M_d \bar{\Psi}_{dL} D_R + \text{h.c.},$$

flavor symmetric mixing

breaks flavor after SSB

flavor symmetric mixing

SM YUKAWAS

• the SM Yukawas are generated after $Y_{u,d}$ obtain vevs and Ψ_i integrated out

$$y_u = \frac{\lambda_u M_u}{\lambda_u' \langle Y_u \rangle}$$

$$y_d = \frac{\lambda_d M_d}{\lambda_d' \langle Y_d \rangle}$$

- note that the SM Yukawas are non-analytic in spurions $\langle Y_{u,d} \rangle$
 - the model is not of the usual MFV-type
 - gauge fields inverse mass hierarchy $m_A^2 \sim (y_{ui}y_{uj})^{-1}$
 - low energy observables have MFV structure

NEW STATES

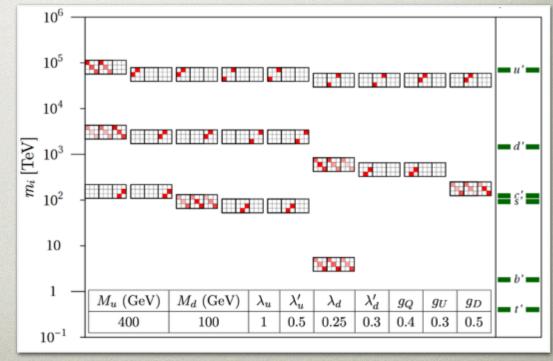
Grinstein, Redi, Villadoro, 1009.2049

- inverted mass hierarchy for the extra fermions
- flavored gauge bosons (FGBs) that couple to light quarks are heavy

despite non-MFV structure FCNCs under

control

• a benchmark: $m_{t'} \sim 520 \text{ GeV},$ $m_{FGB}^{min} \sim 3.2 \text{ TeV}$ (potentially in conflict with LHC)



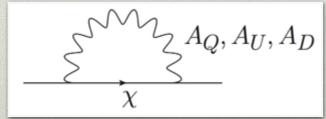
DARK MATTER

- take DM to be a fermion
 - vector-like, so that no anomalies
 - take it to be in fundamental of SU(3)_U

$$\chi_L \sim (1, 3, 1), \qquad \chi_R^c \sim (1, \bar{3}, 1). \qquad \mathcal{L}_{\text{mass}}^{\text{DM}} = m_\chi \bar{\chi}_L \chi_R + \text{h.c.}.$$

$$\mathcal{L}_{\mathrm{mass}}^{\mathrm{DM}} = m_{\chi} \bar{\chi}_L \chi_R + \mathrm{h.c.}$$

- the DM mass splitting could be due to
 - radiative corrections alone



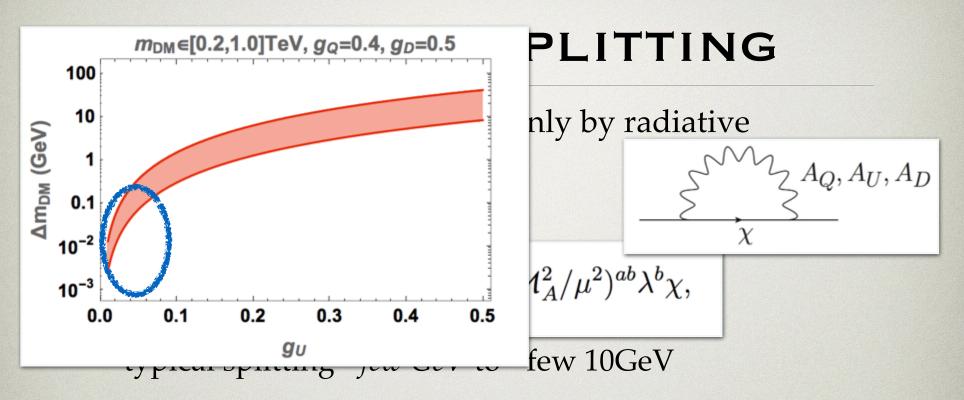
additional source of flavor breaking

RADIATIVE SPLITTING

- if mass degeneracy broken only by radiative corrections
 - in the limit of $m_{\chi} \ll m_A$

$$\mathcal{L}_{\text{break}}^{\text{DM}} = -\frac{m_{\chi} g_U^2}{16\pi^2} \bar{\chi} \lambda^a (\log \mathcal{M}_A^2/\mu^2)^{ab} \lambda^b \chi,$$

- typical splitting ~few GeV to ~few 10GeV
 - long enough lifetimes that problems with BBN, CMB,
 ...
- if splitting below m_{π} cosmologically metastable
 - DM composed of three states
 - χ_1 the lightest state



- long enough lifetimes that problems with BBN, CMB,
 ...
- if splitting below m_{π} cosmologically metastable
 - DM composed of three states
 - χ_1 the lightest state

ADDITIONAL SPLITTING

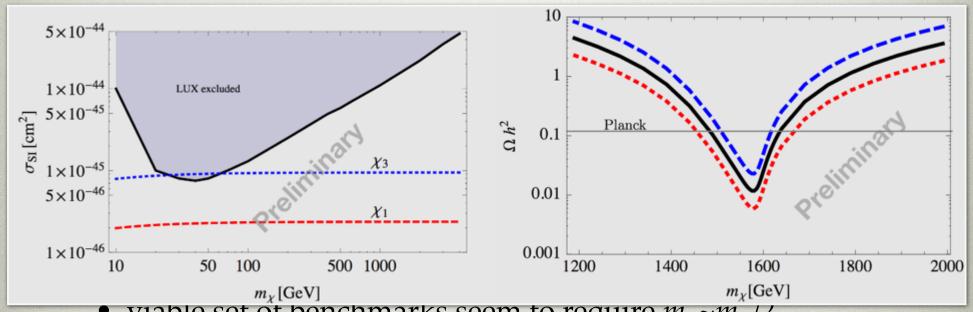
- if extra splitting due to direct flavor breaking from additional spurion
 - e.g. due to a scalar in the adjoint of $SU(3)_U$
 - the DM states χ_1 , χ_2 , χ_3 can have masses split by O(1)
 - heavier states decay before BBN
 - DM is the lightest χ state
 - can be either χ_1 , χ_2 , or χ_3

RELIC ABUNDANCE

- the two cases of mass splitting qualitatively different
 - radiative splitting: co-annihilation of χ_2 , χ_3 , while χ_1 chemically decoupled
 - additional splitting: simple thermal relic
- only the lightest gauge boson relevant for the DM interactions
 - approximately T₈ diagonal in SU(3)_i
 - DM annihilates to t't̄', tt̄, jj
- viable set of benchmarks seem to require $m_{\chi} \sim m_A/2$
- there is a lower bound on m_{χ} due to flavor and collider constraints on flavored gauge bosons

RELIC ABUNDANCE

- the two cases of mass splitting qualitatively different
 - radiative splitting: co-annihilation of χ_2 , χ_3 , while χ_1



- viable set of benchmarks seem to require $m_{\chi} \sim m_A/2$
- there is a lower bound on m_{χ} due to flavor and collider constraints on flavored gauge bosons

DM & FLAVOR VIOLATION

THE AIM

Kamenik, JZ, 1107.0623

- most of the time flavor breaking irrelevant in DM searches
 - is there an instant where it is important?

FV AND DM

- FV couplings can be important
 - when DM couplings to quarks are chirality flipping
 - since then couplings to two different EW representations
 - typically in two different flavor representations as well
- numerically, the FV couplings can dominate in mono tops

DIRECT PRODUCTION

use EFT for DM interactions with quarks

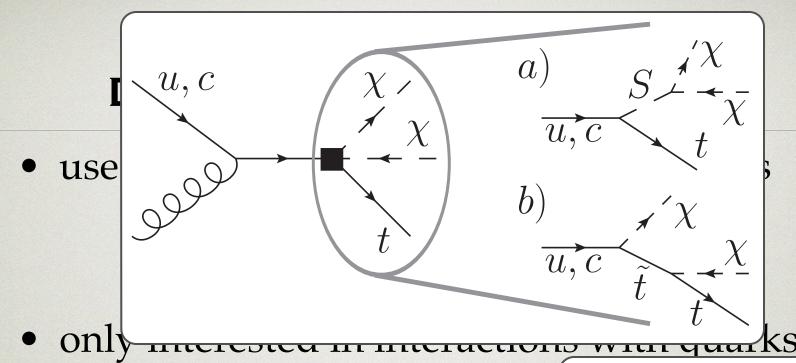
$$\left(\mathcal{L}_{\mathrm{int}} = \sum_{a} rac{C_a}{\Lambda^{n_a}} \mathcal{O}_a
ight)$$

only interested in interactions with quarks

$$\mathcal{O}_{1a}^{ij} = (\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}) \mathcal{J}_{a}^{\mu}, \qquad \mathcal{O}_{2a}^{ij} = (\bar{u}_{R}^{i} \gamma_{\mu} u_{R}^{j}) \mathcal{J}_{a}^{\mu}, \qquad \mathcal{O}_{3a}^{ij} = (\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}) \mathcal{J}_{a}^{\mu}, \qquad \mathcal{O}_{3a}^{ij} = (\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}) \mathcal{J}_{a}^{\mu}, \qquad \mathcal{O}_{5a}^{ij} = (\bar{Q}_{L}^{i} \tilde{H} d_{R}^{j}) \mathcal{J}_{a}, \qquad \mathcal{O}_{5a}^{ij} = (\bar{Q}_{L}^{i} \tilde{H} d_{R}^{j}) \mathcal{J}_{a},$$

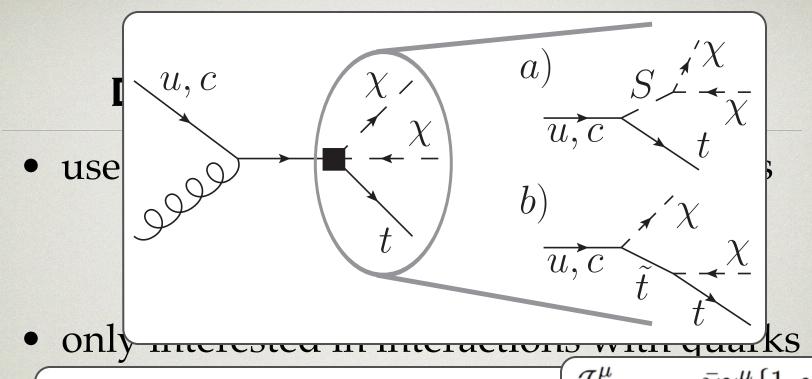
• full set includes other ops.

$$\left[\mathcal{J}_{S,P} = \bar{\chi}\{1,\gamma_5\}\chi\right]$$



$$\mathcal{O}_{1a}^{ij} = (\bar{Q}_L^i \gamma_\mu Q_L^j) \mathcal{J}_a^\mu, \qquad \mathcal{O}_{1a}^{ij} = (\bar{q}_R^i \gamma_\mu u_R^j) \mathcal{J}_a^\mu, \qquad \mathcal{O}_{3a}^{ij} = (\bar{d}_R^i \gamma_\mu d_R^j) \mathcal{J}_a^\mu, \qquad \mathcal{O}_{3a}^{ij} = (\bar{d}_R^i \gamma_\mu d_R^j) \mathcal{J}_a^\mu, \qquad \mathcal{O}_{5a}^{ij} = (\bar{Q}_L^i \tilde{H} d_R^j) \mathcal{J}_a, \qquad \mathcal{O}_{5a}^{ij} = (\bar{Q}_L^i \tilde{H$$

• full set includes other ops.



• full set includes other ops.

HORIZONTAL SYMMETRIES EXAMPLE

• an example: abelian horizontal symm.

Leurer, Nir, Seiberg hep-ph/9212278; hep-ph/9310320

the yukawas are given by

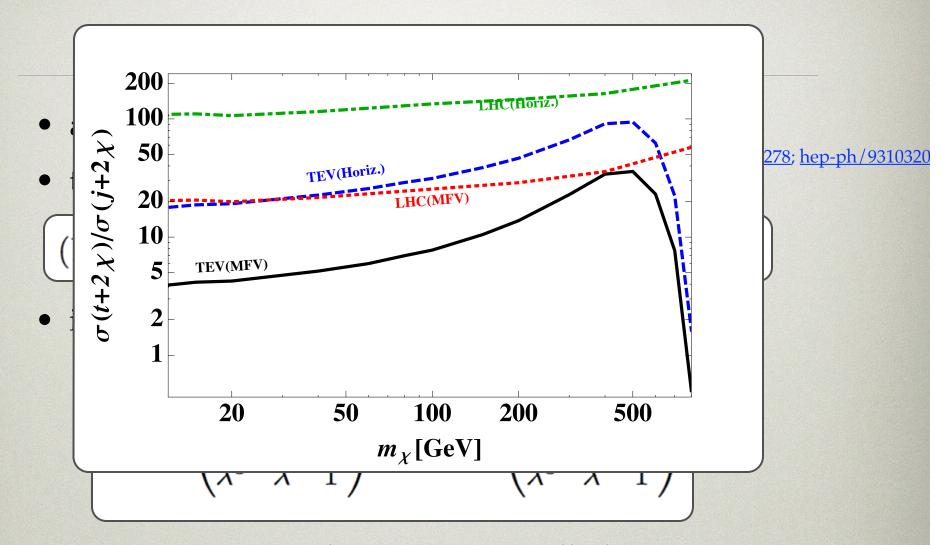
$$(Y_u)_{ij} \sim \lambda^{|H(\bar{u}_R^j) + H(Q^i)|}, \quad (Y_d)_{ij} \sim \lambda^{|H(\bar{d}_R^j) + H(Q^i)|}$$

in the same way the couplings to DM

$$C_2 \sim \begin{pmatrix} 1 & \lambda^2 & \lambda^3 \\ \lambda^2 & 1 & \lambda \\ \lambda^3 & \lambda & 1 \end{pmatrix}, \quad C_4 \sim \begin{pmatrix} \lambda^6 & \lambda^4 & \lambda^3 \\ \lambda^5 & \lambda^3 & \lambda^2 \\ \lambda^3 & \lambda & 1 \end{pmatrix}$$

- note: *c-t*-DM coupling parametrically larger
- even larger effects if DM charged under flavor

HORIZONTAL SYMMETRIES



- note: *c-t*-DM coupling parametrically larger
- even larger effects if DM charged under flavor

HORIZONTAL SYMMETRIES EXAMPLE

• an example: abelian horizontal symm.

Leurer, Nir, Seiberg hep-ph/9212278; hep-ph/9310320

the yukawas are given by

$$(Y_u)_{ij} \sim \lambda^{|H(\bar{u}_R^j) + H(Q^i)|}, \quad (Y_d)_{ij} \sim \lambda^{|H(\bar{d}_R^j) + H(Q^i)|}$$

in the same way the couplings to DM

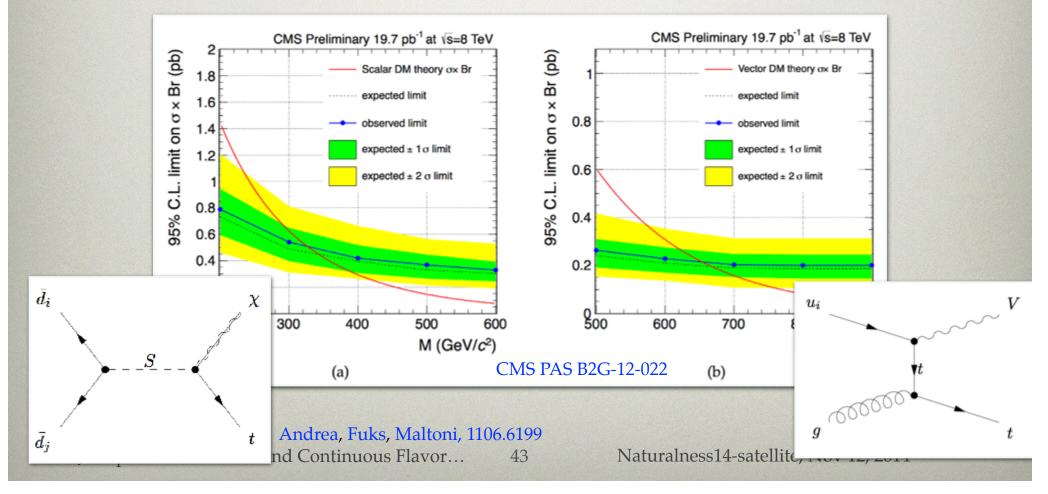
$$C_2 \sim \begin{pmatrix} 1 & \lambda^2 & \lambda^3 \\ \lambda^2 & 1 & \lambda \\ \lambda^3 & \lambda & 1 \end{pmatrix}, \quad C_4 \sim \begin{pmatrix} \lambda^6 & \lambda^4 & \lambda^3 \\ \lambda^5 & \lambda^3 & \lambda^2 \\ \lambda^3 & \lambda & 1 \end{pmatrix}$$

- note: *c-t*-DM coupling parametrically larger
- even larger effects if DM charged under flavor

MONOTOP EXPERIMENTAL RESULTS

- CMS results on monotop searches
 - couplings set to 0.1
 - uses hadronic tops: 3j+MET channel

CMS PAS B2G-12-022; improves CDF 1202.5653;



CONCLUSIONS

- have shown three examples where flavor important for understanding DM
 - (meta-)stability of DM
 - monotop signals

BACKUP SLIDES