Chiral Flavor Violation from Extended Gauge Mediation

Jared A. Evans

jaredaevans@gmail.com

Department of Physics University of Illinois, Urbana-Champaign

arxiv:1303.0228 – JAE, D. Shih arxiv:1411.XXXX – JAE, D. Shih, A. Thalapillil More In Progress – JAE, D. Shih, A. Thalapillil

Evans (UIUC)

A Higgs at \sim 125 GeV is a $\it big$ problem for the MSSM

A Higgs at \sim 125 GeV is a *big* problem for the MSSM

To accommodate, we need either: (Draper, Meade, Reece, Shih 2011)

Gauge mediated SUSY breaking (GMSB) \Rightarrow no A-terms at M_{mess}

Gauge mediated SUSY breaking (GMSB) \Rightarrow no A-terms at M_{mess}

Can be generated through running, but need $M_{mess} \gg M_{SUSY}$

 \Rightarrow huge tuning $\Delta \sim 5000$

Evans (UIUC)

 χ FV from EGMSB

Higgs at 125 GeV Better in EGMSB!

Extended GMSB has MSSM-messenger terms in the superpotential

 $W \supset \lambda H_u \Phi \Psi + y_t H_u Q_3 U_3 + X (\Phi \overline{\Phi} + \Psi \overline{\Psi}) + \text{h.c.}$

Higgs at 125 GeV Better in EGMSB!

Extended GMSB has MSSM-messenger terms in the superpotential

$$W \supset \lambda H_u \Phi \Psi + y_t H_u Q_3 U_3 + X (\Phi ar \Phi + \Psi ar \Psi) + ext{h.c.}$$

A-terms are bilinear terms: $A_t = y_t \left(A^{H_u} F^{\dagger}_{H_u} H_u + A^Q F^{\dagger}_{Q_3} Q_3 + A^U F^{\dagger}_{U_3} U_3 \right)$

Higgs at 125 GeV Better in EGMSB!

Extended GMSB has MSSM-messenger terms in the superpotential

$$W \supset \lambda H_u \Phi \Psi + y_t H_u Q_3 U_3 + X (\Phi ar \Phi + \Psi ar \Psi) + ext{h.c.}$$

A-terms are *bilinear* terms: $A_t = y_t \left(A^{H_u} F^{\dagger}_{H_u} H_u + A^Q F^{\dagger}_{Q_3} Q_3 + A^U F^{\dagger}_{U_3} U_3 \right)$ With a low messenger scale and large A-terms, tuning is reduced! Tuning: $\Delta \sim 1000$, i.e., $2 \times$ the best the MSSM can get!

Evans (UIUC)

 χ FV from EGMSB

$$A_t = y_t \left(A^{H_u} F^{\dagger}_{H_u} H_u + A^Q F^{\dagger}_{Q_3} Q_3 + A^U F^{\dagger}_{U_3} U_3 \right)$$

Discuss Tuning in EGMSB Models with a 125 GeV Higgs

Survey Flavor in EGMSB Models with Lower Tuning

$$A_t = y_t \left(A^{H_u} F^{\dagger}_{H_u} H_u + A^Q F^{\dagger}_{Q_3} Q_3 + A^U F^{\dagger}_{U_3} U_3 \right)$$

Discuss Tuning in EGMSB Models with a 125 GeV Higgs

- ▶ Need EGMSB couplings that contain H_u , Q_3 or U_3 ($Q \equiv Q_3$)
- Write all couplings compatible with SU(5) unification ($N_{eff} \leq 6$)
- Define each model by ONE EGMSB coupling (31 models total)
- Scan each model to determine smallest tuning possible

Survey Flavor in EGMSB Models with Lower Tuning

$$A_t = y_t \left(A^{H_u} F_{H_u}^{\dagger} H_u + A^Q F_{Q_3}^{\dagger} Q_3 + A^U F_{U_3}^{\dagger} U_3 \right)$$

Discuss Tuning in EGMSB Models with a 125 GeV Higgs

- ▶ Need EGMSB couplings that contain H_u , Q_3 or U_3 ($Q \equiv Q_3$)
- Write all couplings compatible with SU(5) unification ($N_{eff} \leq 6$)
- ▶ Define each model by ONE EGMSB coupling (31 models total)
- Scan each model to determine smallest tuning possible

Survey Flavor in EGMSB Models with Lower Tuning

- Relax flavor alignment, i.e., $\kappa_3 Q_3 \Phi \tilde{\Phi} \rightarrow \kappa_i Q_i \Phi \tilde{\Phi}$
- How much misalignment allowed before flavor constraints?
- What does the future hold?

Lightning GMSB Review

 $W \sim X \Phi \tilde{\Phi} + \{MSSM \text{ yukawas}\}$

Lightning GMSB Review

 $W \sim X \Phi \tilde{\Phi} + \{MSSM \text{ yukawas}\}$

 $\langle X
angle = M + heta^2 F$, $\Lambda = F/M$, $ilde{\Lambda} = rac{\Lambda}{16\pi^2}$

Lightning GMSB Review

 $W \sim X \Phi \tilde{\Phi} + \{MSSM \text{ yukawas}\}$

$$\langle X
angle = M + heta^2 F$$
, $\Lambda = F/M$, $ilde{\Lambda} = rac{\Lambda}{16\pi^2}$

 $M_r \sim N_{eff} g_r^2 \tilde{\Lambda}$ $m_{soft}^2 \sim 2N_{eff} C_r g_r^4 \tilde{\Lambda}^2$ (C_r quadratic Casimirs) A-terms = 0

EGMSB adds superpotential interactions between MSSM and Messengers

Two types of models

	Туре		Type II		
MSSM-N	/lessenger-N	Vessenger	MSSM-MSSM-Messenger		
Higgs	Q-class	<u>U-class</u>	w/ mixing	w/o mixing	
$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi ilde \Phi$	$\lambda U \Phi ilde \Phi$	$\lambda H_u Q \Phi_U$	$\lambda UE\Phi_{\bar{D}}$	

EGMSB adds superpotential interactions between MSSM and Messengers

Two types of models

		Type		Type II		
	MSSM-N	/lessenger-N	Vessenger	MSSM-MSSM-Messenger		
	Higgs	Q-class	<u>U-class</u>	w/ mixing	w/o mixing	
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi ilde \Phi$	$\lambda U \Phi ilde \Phi$	$\lambda H_u Q \Phi_U$	$\lambda U E \Phi_{\bar{D}}$	
Tuning:	???	???	???	???	???	
Flavor:	???	???	???	???	???	

#	Model	d _H	d_{ϕ}	Cr
I.1	$H_{u}\phi_{\bar{5},H_{d}}\phi_{1,S}$	Nm	3	$\left(\frac{3}{10},\frac{3}{2},0\right)$
1.2	$H_{u}\phi_{10,Q}\phi_{10,U}$	3Nm	3	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$
1.3	$H_u \phi_{5,\bar{D}} \phi_{1\bar{0},\bar{Q}}$	3	3	$\left(\frac{9}{30}, \frac{3}{2}, \frac{8}{3}\right)$
1.4	$H_{\mu}\phi_{5,\bar{L}}\phi_{\bar{10},\bar{E}}$	1	3	$\left(\frac{9}{10}, \frac{3}{2}, 0\right)$
1.5	$H_{\mu}\phi_{\bar{5},L}\phi_{24,S}$	1	3	$\left(\frac{3}{10},\frac{3}{2},0\right)$
I.6	$H_{u}\phi_{\bar{5},L}\phi_{24,W}$	$\frac{3}{2}$	<u>5</u> 2	$\left(\frac{3}{10}, \frac{7}{2}, 0\right)$
1.7	$H_{u}\phi_{\bar{5},D}\phi_{24,X}$	3	3	$\left(\frac{19}{30},\frac{3}{2},\frac{8}{3}\right)$

$$W \sim \kappa H_u \sum_{i=1}^{N_m} \Phi_i \tilde{\Phi}_i$$

$$\begin{aligned} A_{H_{u}} &= -d_{H}\kappa^{2}\tilde{\Lambda} \\ \delta m_{H_{u}}^{2} &= d_{H}\kappa^{2}\left(\left(d_{H} + d_{\phi}\right)\kappa^{2} - 2C_{r}g_{r}^{2} - \frac{16\pi^{2}}{3}h\left(\frac{\Lambda}{M}\right)\frac{\Lambda^{2}}{M^{2}}\right)\tilde{\Lambda}^{2} \\ \delta m_{Q}^{2} &= -d_{H}y_{t}^{2}\kappa^{2}\tilde{\Lambda}^{2} \\ \delta m_{U}^{2} &= -2d_{H}y_{t}^{2}\kappa^{2}\tilde{\Lambda}^{2} \end{aligned}$$

	#	Model	d _H	d_{ϕ}	Cr	
	1.1	$H_u \phi_{\bar{5}, H_d} \phi_{1, \mathbf{S}}$	Nm	3	$\left(\frac{3}{10},\frac{3}{2},0\right)$	
	1.2	$H_u\phi_{10,Q}\phi_{10,U}$	3 <i>N</i> m	3	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	
	1.3	$H_u \phi_{5,\bar{D}} \phi_{1\bar{0},\bar{Q}}$	3	3	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	
	1.4	$H_{u}\phi_{5,\bar{L}}\phi_{\bar{10},\bar{E}}$	1	3	$\left(\frac{9}{10},\frac{3}{2},0\right)$	
	1.5	$H_{\mu}\phi_{\bar{5},L}\phi_{24,S}$	1	3	$\left(\frac{3}{10}, \frac{3}{2}, 0\right)$	
bilinear A	I.6	$H_u \phi_{\bar{5},L} \phi_{24,W}$	$\frac{3}{2}$	$\frac{5}{2}$	$\left(\frac{3}{10}, \frac{7}{2}, 0\right)$	
	1.7	$H_{u}\phi_{\mathbf{\bar{5}},D}\phi_{24,X}$	3	3	$\left(\frac{19}{30}, \frac{3}{2}, \frac{8}{3}\right)$	
bilin $A_{H_u} = -d_H \kappa^2 \tilde{\Lambda}$ $\delta m_{H_u}^2 = d_H \kappa^2 \left((d_H \kappa^2) + d_H \kappa^2 \kappa^2 + d_H \kappa^2 + d_$	$ear A$ \downarrow $d_{H} +$ $\tilde{\Lambda}^{2}$ $c^{2}\tilde{\Lambda}^{2}$	$W\sim\kappa M$ $d_{\phi})\kappa^2-2C_{r\xi}$	$H_u \sum_{r=1}^{N_m} e^{2r}$	$\Phi_i \tilde{\Phi}_i$ $\frac{6\pi^2}{3}h$	$\left(\frac{\Lambda}{M}\right)\frac{\Lambda^2}{M^2}\right)\hat{I}$	ζ ²

Evans (UIUC)

Type I Squark Models EGMSB Soft Formulas

#	Model	d q	d_{ϕ}	C _r	#	Model	dυ	d_{ϕ}	C _r
1.8	$Q\phi_{ar{f I 0},ar{m Q}}\phi_{f 1,ar{m S}}$	Nm	7	$\left(\frac{1}{30},\frac{3}{2},\frac{8}{3}\right)$	I.12	$U\phi_{10,\mathbf{\bar{U}}}\phi_{1,\mathbf{s}}$	Nm	4	$\left(\frac{8}{15}, 0, \frac{8}{3}\right)$
1.9	$Q\phi_{\bar{5}, \mathbf{D}}\phi_{\bar{5}, \mathbf{L}}$	Nm	5	$\left(\frac{7}{30}, \frac{3}{2}, \frac{8}{3}\right)$	I.13	$U\phi_{5,\mathbf{D}}\phi_{5,\mathbf{D}}$	2Nm	4	$\left(\frac{2}{5}, 0, 4\right)$
I.10	Q \$	1	5	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	I.14	$U\phi_{10,Q}\phi_{5,H_{II}}$	2	4	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$
I.11	$Q\phi_{10,Q}\phi_{5,ar{D}}$	2	6	$\left(\frac{1}{10},\frac{3}{2},4\right)$	I.15	$U\phi_{10,E}\phi_{5,\bar{D}}$	1	4	$\left(\frac{14}{15}, 0, \frac{8}{3}\right)$

$$W \sim \kappa Q \sum_{r}^{N_{m}} \Phi_{i} \tilde{\Phi}_{i} \qquad A_{Q} = -d_{Q} \kappa^{2} \tilde{\Lambda}$$

$$\delta m_{Q}^{2} = d_{Q} \kappa^{2} \left(\left(d_{Q} + d_{\phi} \right) \kappa^{2} - 2C_{r} g_{r}^{2} - \frac{16\pi^{2}}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^{2}}{M^{2}} \right) \tilde{\Lambda}^{2}$$

$$\delta m_{H_{u}}^{2} = -3d_{Q} y_{t}^{2} \kappa^{2} \tilde{\Lambda}^{2} \qquad \delta m_{H_{d}}^{2} = -3d_{Q} y_{b}^{2} \kappa^{2} \tilde{\Lambda}^{2}$$

$$\delta m_{U}^{2} = -2d_{Q} y_{t}^{2} \kappa^{2} \tilde{\Lambda}^{2} \qquad \delta m_{D}^{2} = -2d_{Q} y_{b}^{2} \kappa^{2} \tilde{\Lambda}^{2}$$

$$W \sim \kappa U \sum_{i}^{N_{m}} \Phi_{i} \tilde{\Phi}_{i} \qquad A_{U} = -d_{U}\kappa^{2}\tilde{\Lambda}$$
$$\delta m_{U}^{2} = d_{U}\kappa^{2} \left((d_{U} + d_{\phi})\kappa^{2} - 2C_{r}g_{r}^{2} - \frac{16\pi^{2}}{3}h\left(\frac{\Lambda}{M}\right)\frac{\Lambda^{2}}{M^{2}} \right)\tilde{\Lambda}^{2}$$
$$\delta m_{Q}^{2} = -d_{U}y_{t}^{2}\kappa^{2}\tilde{\Lambda}^{2} \qquad \delta m_{H_{u}}^{2} = -3d_{U}y_{t}^{2}\kappa^{2}\tilde{\Lambda}^{2}$$

Evans (UIUC)

Solving for $m_h = 125$ GeV

$$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda} \qquad \text{Note:} \quad A_t = y_t \left(A_{H_u} + A_{Q_3} + A_{U_3} \right)$$

$$\delta m_{H_u}^2 = d_H \kappa^2 \left(\left(d_H + d_\phi \right) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2$$

$$\delta m_Q^2 = -d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

$$\delta m_U^2 = -2d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

Given an EGMSB model, κ , F, and M: spectra completely determined

Solving for $m_h = 125$ GeV

$$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda} \qquad \text{Note:} \ A_t = y_t \left(A_{H_u} + A_{Q_3} + A_{U_3} \right)$$

$$\delta m_{H_u}^2 = d_H \kappa^2 \left(\left(d_H + d_\phi \right) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2$$

$$\delta m_Q^2 = -d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

$$\delta m_U^2 = -2d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

Given an EGMSB model, κ , F, and M: spectra completely determined Moreover, given $(\kappa, \frac{\Lambda}{M})$, increasing M increases m_h monotonically

Solving for $m_h = 125$ GeV

$$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda} \qquad \text{Note:} \quad A_t = y_t \left(A_{H_u} + A_{Q_3} + A_{U_3} \right)$$

$$\delta m_{H_u}^2 = d_H \kappa^2 \left(\left(d_H + d_\phi \right) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2$$

$$\delta m_Q^2 = -d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

$$\delta m_U^2 = -2d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

Given an EGMSB model, κ , F, and M: spectra completely determined Moreover, given $(\kappa, \frac{\Lambda}{M})$, increasing M increases m_h monotonically

(Evans, Shih 2013)

- 1. For each model, scan over $(\kappa, \frac{\Lambda}{M})$
- 2. Dial *M* to solve for $m_h = 125$
- 3. Quantify how finely-tuned that point is

Evans (UIUC)

#	Coupling	$ \Delta b $	Best Point $\{\frac{\Lambda}{M}, \lambda\}$	$ A_t /M_S$	М _ĝ	M _S	$ \mu $	Tuning
I.1	$H_{\boldsymbol{u}}\phi_{\mathbf{\bar{5}},\boldsymbol{L}}\phi_{1,\boldsymbol{S}}$	Nm	{0.375, 1.075}	1.98	3222	1842	777	3400
1.2	$H_{\mu}\phi_{10,0}\phi_{10,U}$	3Nm	{0.25, 1.075}	1.99	3178	1828	789	2450
1.3	$H_{\mu}\phi_{5}, \bar{D}\phi_{10}, \bar{O}$	4	$\{0.25, 1.3\}$	2.05	2899	1709	668	3200
1.4	$H_{\mu}\phi_{5,\bar{L}}\phi_{10,\bar{E}}$	4	$\{0.125, 0.95\}$	0.58	11134	8993	2264	4050
1.5	$H_{u}\phi_{\bar{5},L}\phi_{24,S}$	6	$\{0.225, 1.000\}$	0.54	13290	9785	3408	3850
I.6	$H_{\mu}\phi_{\bar{5},L}\phi_{24,W}$	6	$\{0.15, 1.025\}$	0.67	11835	8637	3259	3410
1.7	Huds, Dog X	6	$\{0.3, 1.425\}$	2.04	3020	1743	576	3500
I.8	$Q\phi_{10,\bar{\boldsymbol{O}}}\phi_{1,\boldsymbol{S}}$	3Nm	$\{0.534, 1.5\}$	2.82	4336	1274	2056	1015
1.9	$Q\phi_{\bar{5},\mathbf{D}}\phi_{\bar{5},\mathbf{L}}$	Nm	{0.353, 0.858}	2.67	4247	1342	2058	1015
I.10	$Q\phi_{10}, U\phi_{5}, H_{II}$	4	{0.51, 1.788}	2.65	4040	1318	2301	1275
1.11	$Q\phi_{10}, Q\phi_{5}, \bar{D}$	4	{0.378, 1.245}	2.76	4020	1257	2292	1260
1.12	$U\phi_{10}, \bar{u}\phi_{1}, s$	3Nm	{0.476, 1.622}	2.62	3815	1347	2070	1030
I.13	$U\phi_{\overline{5},D}\phi_{\overline{5},D}$	2Nm	$\{0.301, 0.908\}$	2.91	3829	1199	2061	1020
1.14	$U\phi_{10}, Q\phi_{5}, H_{H}$	4	{0.37, 1.352}	2.81	3575	1220	2312	1285
I.15	$U\phi_{10,E}\phi_{5,\bar{D}}$	4	{0.51, 1.972}	2.63	3526	1312	2310	1280
II.1	QUde H.	1	{0.55, 1.64}	2.02	769	1965	2738	1800
11.2	$UH_{u}\phi_{10,Q}$	3	$\{0.009, 1.067\}$	2.14	2203	1628	543	850
11.3	$QH_{u}\phi_{10,U}$	3	{0.269, 1.05}	2.27	2514	1458	439	1500
11.4	QD \$\$,H	1	{0.37, 1.2}	1.78	2597	1829	3553	3020
11.5	$QH_d\phi_{\overline{5},D}$	1	$\{0.15, 1.19\}$	1.45	2497	2108	3773	6050
II.6	$QQ\phi_{5,\bar{D}}$	1	{0.45, 0.1}	0.22	7943	9870	3610	5000
11.7	$UD\phi_{\overline{5},D}$	1	$\{0.21, 1.26\}$	2.34	1374	1334	2998	2150
II.8	$QL\phi_{\overline{5},D}$	1	$\{0.14, 1.2\}$	1.51	1501	1204	2203	3700
11.9	$UE\phi_{5}\bar{D}$	1	{0.445, 1.46}	1.89	2004	1750	3373	2730
II.10	$H_{u}D\phi_{24,X}$	5	$\{0.42, 1.45\}$	2.13	2943	1649	282	3500
II.11	$H_{u}L\phi_{1,S}$	1*	{0.15, 0.675}	0.54	7103	8166	3714	4930
II.12	$H_{u}L\phi_{24,S}$	5	{0.296, 0.96}	0.53	12629	9660	3333	3780
II.13	$H_{u}L\phi_{24}, W$	5	{0.212, 0.96}	0.65	11487	8710	3687	3380
II.14	$H_{\boldsymbol{u}}H_{\boldsymbol{d}}\phi_{\boldsymbol{1}},\boldsymbol{s}$	1*	{0.125, 0.675}	0.55	7049	8051	3255	5000
II.15	$H_u H_d \phi_{24,S}$	5	$\{0.20, 1.00\}$	0.57	12047	9213	1628	4220
II.16	$H_u H_d \phi_{24}, W$	5	{0.2, 0.946}	0.64	11571	8789	3665	3460

Evans (UIUC)

 $\chi {\rm FV}$ from EGMSB

11 / 28

 $\kappa_3 Q_3 \phi_{\overline{5},D} \phi_{\overline{5},L}$

Evans (UIUC)

 $\kappa_3 Q_3 \phi_{\overline{5},D} \phi_{\overline{5},L}$

 $\kappa_3 Q_3 \phi_{\overline{5},D} \phi_{\overline{5},L}$

Evans (UIUC)

 $\kappa_3 Q_3 \phi_{\overline{5},D} \phi_{\overline{5},L}$

 $\kappa_3 Q_3 \phi_{\overline{5},D} \phi_{\overline{5},L}$

		Type I		Type II		
	Higgs	Q-class	<u>U-class</u>	w/ mixing	w/o mixing	
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi ilde \Phi$	$\lambda U \Phi \tilde{\Phi}$	$\lambda H_u Q \Phi_U$	$\lambda U E \Phi_{\bar{D}}$	
Tuning:	BAD	GOOD	GOOD	GOOD	BAD	
Flavor:	MFV	???	???	???	???	

		Туре		Type II		
	Higgs	Q-class	<u>U-class</u>	w/ mixing	w/o mixing	
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi ilde \Phi$	$\lambda U \Phi \tilde{\Phi}$	$\lambda H_u Q \Phi_U$	$\lambda U E \Phi_{\bar{D}}$	
Tuning:	BAD	GOOD	GOOD	GOOD	BAD	
Flavor:	MFV	???	???	???	DON'T CARE!	

In the SM, flavor is only violated by the CKM – W charged current

To constrain NP, flavor observables that vanish at tree level in SM are best

Small CKM and GIM suppress many further

In the SM, flavor is only violated by the CKM – W charged current

To constrain NP, flavor observables that vanish at tree level in SM are best

Small CKM and GIM suppress many further

Observable	Experiment	SM prediction		
Δm_K	$(3.484 \pm 0.006) \times 10^{-15} \text{ GeV}$	_*		
Δm_{B_d}	$(3.36 \pm 0.02) \times 10^{-13} \text{ GeV}$	$(3.56 \pm 0.60) \times 10^{-13} \text{ GeV}$		
Δm_{B_s}	$(1.169 \pm 0.0014) \times 10^{-11} { m GeV}$	$(1.13 \pm 0.17) \times 10^{-11} \text{ GeV}$		
Δm_D	$(6.2^{+2.7}_{-2.8}) \times 10^{-15} \text{ GeV}$	_		
$Br(K^+ o \pi^+ u ar{ u})$	$(1.7\pm1.1) imes10^{-10}$	$(7.8\pm0.8) imes10^{-11}$		
$Br(B \rightarrow X_s \gamma)$	$(3.40\pm 0.21) imes 10^{-4}$	$(3.15\pm0.23) imes10^{-4}$		
$Br(B \rightarrow X_d \gamma)$	$(1.41\pm0.57) imes10^{-5}$	$(1.54^{+0.26}_{-0.31}) imes10^{-5}$		
$Br(B_s \rightarrow \mu^+ \mu^-)$	$(2.9\pm 0.7) imes 10^{-9}$	$(3.65\pm0.23) imes10^{-9}$		
$Br(B_d \rightarrow \mu^+ \mu^-)$	$(3.6^{+1.6}_{-1.4}) imes 10^{-10}$	$(1.06\pm0.09) imes10^{-10}$		
- Dimension 5: $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2F_{\mu\nu}$, $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2G_{\mu\nu}$
 - Radiative $\Delta F = 1: b \rightarrow s\gamma, b \rightarrow d\gamma$

• Dimension 5:
$$\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2F_{\mu\nu}$$
, $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2G_{\mu\nu}$

• Radiative
$$\Delta F = 1$$
: $b \rightarrow s\gamma$, $b \rightarrow d\gamma$

► Hadronic Dimension 6: $\frac{1}{\Lambda^2} (\bar{q}_1 q_2) (\bar{q}_3 q_4), \frac{1}{\Lambda^2} (\bar{q}_1 \gamma_\mu q_2) (\bar{q}_3 \gamma^\mu q_4),$ etc.

• Meson Mixing
$$\Delta F = 2$$
: Δm_K , Δm_D , Δm_{B_s} , Δm_{B_d}

• Dimension 5:
$$\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2F_{\mu\nu}$$
, $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2G_{\mu\nu}$

• Radiative
$$\Delta F = 1: b \rightarrow s\gamma, b \rightarrow d\gamma$$

► Hadronic Dimension 6: $\frac{1}{\Lambda^2} (\bar{q}_1 q_2) (\bar{q}_3 q_4), \frac{1}{\Lambda^2} (\bar{q}_1 \gamma_\mu q_2) (\bar{q}_3 \gamma^\mu q_4),$ etc.

- Meson Mixing $\Delta F = 2$: Δm_K , Δm_D , Δm_{B_s} , Δm_{B_d}
- ► Leptonic Dimension 6: $\frac{1}{\Lambda^2} (\bar{q}_1 q_2) (\mu^+ \mu^-)$, $\frac{1}{\Lambda^2} (\bar{q}_1 \gamma_\mu q_2) (\bar{\nu} \gamma^\mu \nu)$, etc.

Semi-leptonic
$$\Delta F = 1$$
: $K \to \pi \nu \nu$, $B_s \to \mu \mu$, $B_d \to \mu \mu$

• Dimension 5:
$$\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2F_{\mu\nu}$$
, $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2G_{\mu\nu}$

• Radiative
$$\Delta F = 1$$
: $b \rightarrow s\gamma$, $b \rightarrow d\gamma$

► Hadronic Dimension 6: $\frac{1}{\Lambda^2} (\bar{q}_1 q_2) (\bar{q}_3 q_4), \frac{1}{\Lambda^2} (\bar{q}_1 \gamma_\mu q_2) (\bar{q}_3 \gamma^\mu q_4),$ etc.

• Meson Mixing
$$\Delta F = 2$$
: Δm_K , Δm_D , Δm_{B_s} , Δm_{B_d}

- ► Leptonic Dimension 6: $\frac{1}{\Lambda^2} (\bar{q}_1 q_2) (\mu^+ \mu^-)$, $\frac{1}{\Lambda^2} (\bar{q}_1 \gamma_\mu q_2) (\bar{\nu} \gamma^\mu \nu)$, etc.
 - ▶ Semi-leptonic $\Delta F = 1$: $K \rightarrow \pi \nu \nu$, $B_s \rightarrow \mu \mu$, $B_d \rightarrow \mu \mu$

Bounds on some operators *much* stronger than others, even for the same observable:

Lightning Flavor Review SUSY: The Mass Matrix and the MIA

$$M_{d}^{2} = \begin{pmatrix} m_{Q,11}^{2} & m_{Q,12}^{2} & m_{Q,13}^{2} & A_{d,11}^{\dagger} v_{d} & A_{d,12}^{\dagger} v_{d} & A_{d,13}^{\dagger} v_{d} \\ m_{Q,21}^{2} & m_{Q,22}^{2} & m_{Q,23}^{2} & A_{d,21}^{\dagger} v_{d} & A_{d,22}^{\dagger} v_{d} & A_{d,33}^{\dagger} v_{d} \\ \frac{m_{Q,31}^{2} & m_{Q,32}^{2} & m_{Q,33}^{2} & A_{d,31}^{\dagger} v_{d} & A_{d,32}^{\dagger} v_{d} & A_{d,33}^{\dagger} v_{d} \\ A_{d,11} v_{d} & A_{d,12} v_{d} & A_{d,13} v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ A_{d,21} v_{d} & A_{d,22} v_{d} & A_{d,33} v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ A_{d,31} v_{d} & A_{d,32} v_{d} & A_{d,33} v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \end{pmatrix}$$

Lightning Flavor Review SUSY: The Mass Matrix and the MIA

$$M_{d}^{2} = \begin{pmatrix} m_{Q,11}^{2} & m_{Q,12}^{2} & m_{Q,13}^{2} & | & A_{d,11}^{\dagger}v_{d} & A_{d,12}^{\dagger}v_{d} & A_{d,13}^{\dagger}v_{d} \\ m_{Q,21}^{2} & m_{Q,22}^{2} & m_{Q,23}^{2} & | & A_{d,21}^{\dagger}v_{d} & A_{d,22}^{\dagger}v_{d} & A_{d,23}^{\dagger}v_{d} \\ \hline m_{Q,31}^{2} & m_{Q,32}^{2} & m_{Q,33}^{2} & | & A_{d,31}^{\dagger}v_{d} & A_{d,32}^{\dagger}v_{d} & A_{d,33}^{\dagger}v_{d} \\ \hline A_{d,11}v_{d} & A_{d,12}v_{d} & A_{d,13}v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ \hline A_{d,31}v_{d} & A_{d,32}v_{d} & A_{d,33}v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ \hline A_{d,31}v_{d} & A_{d,32}v_{d} & A_{d,33}v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ \end{pmatrix} \\ M_{d}^{2} = \tilde{m}_{d,0}^{2}(\mathbf{1} + \delta^{XY}), \qquad \text{where } \tilde{m}_{d,0}^{2} = \frac{1}{6} \operatorname{Tr}(M_{d}^{2}) \\ \delta^{XY} = \left(\frac{\delta_{ij}^{LL}}{\delta_{ij}^{R}} & \delta_{ij}^{RL} \\ \end{array} \right)$$

Lightning Flavor Review SUSY: The Mass Matrix and the MIA

$$M_{d}^{2} = \begin{pmatrix} m_{Q,11}^{2} & m_{Q,12}^{2} & m_{Q,13}^{2} & | & A_{d,11}^{\dagger} V_{d} & A_{d,12}^{\dagger} V_{d} & A_{d,13}^{\dagger} V_{d} \\ m_{Q,21}^{2} & m_{Q,32}^{2} & m_{Q,33}^{2} & | & A_{d,21}^{\dagger} V_{d} & A_{d,23}^{\dagger} V_{d} & A_{d,33}^{\dagger} V_{d} \\ \frac{m_{Q,31}^{2} & m_{Q,32}^{2} & m_{Q,33}^{2} & | & A_{d,31}^{\dagger} V_{d} & A_{d,32}^{\dagger} V_{d} & A_{d,33}^{\dagger} V_{d} \\ A_{d,11Vd} & A_{d,12Vd} & A_{d,13Vd} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ A_{d,31Vd} & A_{d,32Vd} & A_{d,33Vd} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ A_{d,31Vd} & A_{d,32Vd} & A_{d,33Vd} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \end{pmatrix}$$

$$M_{d}^{2} = \tilde{m}_{d,0}^{2} (\mathbf{1} + \delta^{XY}), \qquad \text{where } \tilde{m}_{d,0}^{2} = \frac{1}{6} \operatorname{Tr}(M_{d}^{2})$$

$$\delta^{XY} = \left(\frac{\delta_{ij}^{LL}}{\delta_{ij}^{IR}} & \delta_{ij}^{RL} \\ \frac{\delta_{ij}^{IR}}{\delta_{ij}^{R}} & 0 \end{pmatrix}$$

$$\delta_{ij}^{LR} = \frac{m_{Q,ij}^{2}}{\tilde{m}_{d,0}^{2}} - \mathbf{1} \qquad \delta_{ij}^{LR} = \frac{v_{d}A_{d,ij}}{\tilde{m}_{d,0}^{2}}$$

Evans (UIUC)

Toward a Flavor Story The Task at Hand

$$W = \kappa_3 Q_3 \Phi \tilde{\Phi} \rightarrow W = \kappa_i Q_i \Phi \tilde{\Phi}$$

We want to compute bounds on couplings κ_i from flavor observables

Toward a Flavor Story The Task at Hand

$$W = \kappa_3 Q_3 \Phi \tilde{\Phi} \rightarrow W = \kappa_i Q_i \Phi \tilde{\Phi}$$

We want to compute bounds on couplings κ_i from flavor observables

To do this we need the following:

- Compute general non-MFV soft masses at the messenger scale
- Run them down to the SUSY scale, including full 3x3 CKM & CPV
- Compute 1-loop Wilson coefficients for all operators of interest
- Run these Wilson coefficients down to the meson scale
- Compute the flavor observables

$$W = \kappa_3 Q_3 \Phi \tilde{\Phi} \rightarrow W = \kappa_i Q_i \Phi \tilde{\Phi}$$

We want to compute bounds on couplings κ_i from flavor observables

To do this we need the following:

- Compute general non-MFV soft masses at the messenger scale
- ▶ Run them down to the SUSY scale, including full 3x3 CKM & CPV
- ► Compute 1-loop Wilson coefficients for all operators of interest
- Run these Wilson coefficients down to the meson scale
- Compute the flavor observables

We could not find a suitable public code to do all of this, so we wrote it!

FormFlavor

Mathematica package based on FeynArts and FormCalc

- Mathematica package based on FeynArts and FormCalc
- ► Computes one-loop Wilson coefficients from Feynman rules

- Mathematica package based on FeynArts and FormCalc
- ► Computes one-loop Wilson coefficients from Feynman rules
- Computes many flavor and CP observables:
 - $\blacktriangleright \Delta m_K, \Delta m_D, \Delta m_{B_s}, \Delta m_{B_d}$
 - $\blacktriangleright \quad K \to \pi \nu \nu, \ B_s \to \mu \mu, \ B_d \to \mu \mu$
 - ▶ $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
 - ϵ_K , neutron EDM
 - Straightforward to add new observables!

- Mathematica package based on FeynArts and FormCalc
- ► Computes one-loop Wilson coefficients from Feynman rules
- Computes many flavor and CP observables:
 - $\blacktriangleright \Delta m_K, \Delta m_D, \Delta m_{B_s}, \Delta m_{B_d}$
 - $\blacktriangleright \quad K \to \pi \nu \nu, \ B_s \to \mu \mu, \ B_d \to \mu \mu$
 - $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
 - ϵ_{K} , neutron EDM
 - Straightforward to add new observables!

Currently for non-MFV MSSM, can be modified for other models

- Mathematica package based on FeynArts and FormCalc
- ► Computes one-loop Wilson coefficients from Feynman rules
- Computes many flavor and CP observables:
 - $\blacktriangleright \Delta m_K, \Delta m_D, \Delta m_{B_s}, \Delta m_{B_d}$
 - $\blacktriangleright \quad K \to \pi \nu \nu, \ B_s \to \mu \mu, \ B_d \to \mu \mu$
 - $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
 - ϵ_{K} , neutron EDM
 - Straightforward to add new observables!
- Currently for non-MFV MSSM, can be modified for other models

(Now, FlavorKit exists which does similar things with SARAH and Spheno)

Toward a Flavor Story Our EGMSB Mass Matrix: Chiral Flavor Violation

In the third-generation dominant limit $(y_i = 0 \text{ for } i \neq t, b)$												
Q-class:	$\delta m^2 \sim$	-	$\begin{pmatrix} \kappa_1^*\kappa_1\tilde{\Lambda}^2\\ \kappa_2^*\kappa_1\tilde{\Lambda}^2\\ \kappa_3^*\kappa_1\tilde{\Lambda}^2\\ 0\\ 0\\ \kappa_3^*\kappa_1yv\tilde{\Lambda} \end{pmatrix}$			$\kappa_1^*\kappa_2\tilde{\Lambda}^2$ $\kappa_2^*\kappa_2\tilde{\Lambda}^2$ $\kappa_3^*\kappa_2\tilde{\Lambda}^2$ 0 0 $\kappa_3^*\kappa_2 yvr$	Ň	$ \begin{array}{c} \kappa_1^* \kappa_3 \tilde{\Lambda}^2 \\ \kappa_2^* \kappa_3 \tilde{\Lambda}^2 \\ \kappa_3^* \kappa_3 \tilde{\Lambda}^2 \end{array} \\ 0 \\ 0 \\ \kappa_3^* \kappa_3 yv \tilde{\Lambda} \end{array} $	0 0 0 0 0 0 0	0 0 0 0 0	$ \begin{array}{c} \kappa_{1}^{*}\kappa_{3} \; yv\tilde{\Lambda} \\ \kappa_{2}^{*}\kappa_{3} \; yv\tilde{\Lambda} \\ \kappa_{3}^{*}\kappa_{3} \; yv\tilde{\Lambda} \\ 0 \\ 0 \\ \kappa_{3}^{*}\kappa_{3} \; y^{2}\tilde{\Lambda}^{2} \end{array} $	_)
U-class:	$\delta m^2 \sim$	-	0 0 0 0 0 0	0 0 0 0 0 0	κ_3^* κ_1^* κ_2^* κ_3^*	0 0 κ ₃ y ² Ã ² κ ₃ yv Ã κ ₃ yv Ã κ ₃ yv Ã	к к к к	$0 \\ 0 \\ \frac{5 \kappa_1 y v \tilde{\Lambda}}{\frac{1}{2} \kappa_1 \tilde{\Lambda}^2} \\ \frac{2}{3} \kappa_1 \tilde{\Lambda}^2} \\ \frac{3}{2} \kappa_1 \tilde{\Lambda}^2}$	$(\\ \kappa_{3}^{*}\kappa_{2} \\ \kappa_{1}^{*}\kappa \\ \kappa_{2}^{*}\kappa \\ \kappa_{3}^{*}\kappa \\ \kappa_{3}^{*}\kappa \\ $	$\frac{yv\tilde{\Lambda}}{2\tilde{\Lambda}^2}$ $2\tilde{\Lambda}^2$ $2\tilde{\Lambda}^2$ $2\tilde{\Lambda}^2$	$\begin{matrix} 0\\ 0\\ \kappa_3^*\kappa_3yv\tilde{\Lambda}\\ \kappa_1^*\kappa_3\tilde{\Lambda}^2\\ \kappa_2^*\kappa_3\tilde{\Lambda}^2\\ \kappa_3^*\kappa_3\tilde{\Lambda}^2\end{matrix}$	_)

Toward a Flavor Story Our EGMSB Mass Matrix: Chiral Flavor Violation

In the third-generation dominant limit $(y_i = 0 \text{ for } i \neq t, b)$												
Q-class:	$\delta m^2 \sim$	-	$\begin{pmatrix} \kappa_1^*\kappa_1\tilde{\Lambda}^2\\ \kappa_2^*\kappa_1\tilde{\Lambda}^2\\ \kappa_3^*\kappa_1\tilde{\Lambda}^2\\ 0\\ 0\\ \kappa_3^*\kappa_1yv\tilde{\Lambda} \end{pmatrix}$			$\kappa_1^* \kappa_2 \tilde{\Lambda}^2$ $\kappa_2^* \kappa_2 \tilde{\Lambda}^2$ $\kappa_3^* \kappa_2 \tilde{\Lambda}^2$ 0 0 $\kappa_3^* \kappa_2 yvr$	Ň	$ \begin{array}{c} \kappa_1^*\kappa_3\tilde{\Lambda}^2\\ \kappa_2^*\kappa_3\tilde{\Lambda}^2\\ \kappa_3^*\kappa_3\tilde{\Lambda}^2\\ 0\\ 0\\ \kappa_3^*\kappa_3 yv\tilde{\Lambda} \end{array} $	0 0 0 0 0 0	0 0 0 0 0 0	$ \begin{array}{c} \kappa_{1}^{*}\kappa_{3} yv\tilde{\Lambda} \\ \kappa_{2}^{*}\kappa_{3} yv\tilde{\Lambda} \\ \kappa_{3}^{*}\kappa_{3} yv\tilde{\Lambda} \\ 0 \\ 0 \\ \kappa_{3}^{*}\kappa_{3} y^{2}\tilde{\Lambda}^{2} \end{array} $	_)
U-class:	$\delta m^2 \sim$	-	0 0 0 0 0 0	0 0 0 0 0 0	$\frac{\kappa_3^*\kappa}{\kappa_1^*}$	0 0 κ ₃ y ² Ã ² κ ₃ yv Ã κ ₃ yv Ã	к к к к	$0 \\ 0 \\ \frac{5 \kappa_1 y v \tilde{\Lambda}}{\frac{1}{2} \kappa_1 \tilde{\Lambda}^2} \\ \frac{2}{3} \kappa_1 \tilde{\Lambda}^2} \\ \frac{3}{2} \kappa_1 \tilde{\Lambda}^2}$	$\begin{array}{c} 0 \\ \kappa_{3}^{*}\kappa_{2} \\ \kappa_{1}^{*}\kappa_{2} \\ \kappa_{2}^{*}\kappa_{3} \\ \kappa_{3}^{*}\kappa_{2} \end{array}$	$\frac{yv\tilde{\Lambda}}{2\tilde{\Lambda}^2}$ $2\tilde{\Lambda}^2$ $2\tilde{\Lambda}^2$ $2\tilde{\Lambda}^2$	$\begin{array}{c} 0 \\ 0 \\ \kappa_{3}^{*}\kappa_{3} yv\tilde{\Lambda} \\ \kappa_{1}^{*}\kappa_{3}\tilde{\Lambda}^{2} \\ \kappa_{2}^{*}\kappa_{3}\tilde{\Lambda}^{2} \\ \kappa_{3}^{*}\kappa_{3}\tilde{\Lambda}^{2} \end{array}$	_)

Features:

• Q-class matrix form for M_d^2 and M_u^2 , U-class only for M_u^2

Flavor violation always off in either LL or RR block (no $\delta_{ii}^{LL} \delta_{ii}^{RR}$)

► LR/RL blocks only have non-zero entries on i3/3i elements (no $\delta_{ii}^{LR}\delta_{ii}^{RL}$)

Toward a Flavor Story Our EGMSB Mass Matrix: Chiral Flavor Violation

In the third-generation dominant limit $(y_i = 0 \text{ for } i \neq t, b)$												
Q-class:	$\delta m^2 \sim$	-	$\begin{pmatrix} \kappa_1^*\kappa_1\tilde{\Lambda}^2\\ \kappa_2^*\kappa_1\tilde{\Lambda}^2\\ \kappa_3^*\kappa_1\tilde{\Lambda}^2\\ 0\\ 0\\ \kappa_3^*\kappa_1yv\tilde{\Lambda} \end{pmatrix}$		Ň	$\begin{matrix} \kappa_1^*\kappa_2\tilde{\Lambda}^2\\\kappa_2^*\kappa_2\tilde{\Lambda}^2\\\kappa_3^*\kappa_2\tilde{\Lambda}^2\\0\\0\\\kappa_3^*\kappa_2yv\tilde{\Lambda}\end{matrix}$		$ \begin{array}{c} \kappa_1^* \kappa_3 \tilde{\Lambda}^2 \\ \kappa_2^* \kappa_3 \tilde{\Lambda}^2 \\ \kappa_3^* \kappa_3 \tilde{\Lambda}^2 \\ 0 \\ 0 \\ \kappa_3^* \kappa_3 yv \tilde{\Lambda} \end{array} $	0 0 0 0 0 0 0	0 0 0 0 0 0	$ \begin{array}{c} \kappa_{1}^{*}\kappa_{3}yv\tilde{\Lambda} \\ \kappa_{2}^{*}\kappa_{3}yv\tilde{\Lambda} \\ \kappa_{3}^{*}\kappa_{3}yv\tilde{\Lambda} \\ 0 \\ 0 \\ \kappa_{3}^{*}\kappa_{3}y^{2}\tilde{\Lambda}^{2} \end{array} $	_)
U-class:	$\delta m^2 \sim$	-	0 0 0 0 0 0	0 0 0 0 0 0	$\frac{\kappa_3^*\kappa}{\kappa_1^*}$ $\frac{\kappa_1^*}{\kappa_2^*}$ κ_3^*	0 0 κ ₃ y ² Ã ² κ ₃ yv Ã κ ₃ yv Ã κ ₃ yv Ã	κ <u>3</u> κ κ	$0 \\ 0 \\ \kappa_1 yv \tilde{\Lambda} \\ \frac{\kappa_1 \tilde{\lambda}^2}{2\kappa_1 \tilde{\Lambda}^2} \\ \kappa_1 \tilde{\lambda}^2 \\ \kappa_1 \tilde{\lambda}^2$	($\kappa_3^*\kappa_2 \\ \kappa_1^*\kappa \\ \kappa_2^*\kappa \\ \kappa_3^*\kappa$	$\frac{yv\tilde{\Lambda}}{2\tilde{\Lambda}^2}$ $\frac{2\tilde{\Lambda}^2}{2\tilde{\Lambda}^2}$ $2\tilde{\Lambda}^2$	$\begin{array}{c} 0 \\ 0 \\ \kappa_{3}^{*}\kappa_{3} yv\tilde{\Lambda} \\ \kappa_{1}^{*}\kappa_{3}\tilde{\Lambda}^{2} \\ \kappa_{2}^{*}\kappa_{3}\tilde{\Lambda}^{2} \\ \kappa_{3}^{*}\kappa_{3}\tilde{\Lambda}^{2} \end{array}$	_)

Features:

• Q-class matrix form for M_d^2 and M_u^2 , U-class only for M_u^2

- Flavor violation always off in either LL or RR block (no $\delta_{ij}^{LL} \delta_{ij}^{RR}$)
- ► LR/RL blocks only have non-zero entries on i3/3i elements (no $\delta_{ij}^{LR}\delta_{ij}^{RL}$)

General χ FV arises simply from symmetries, e.g anarchic Q, vanilla $U, D \Rightarrow Q\chi$ FV

Evans (UIUC)

 χ FV from EGMSB

At best tuned point, for $(\kappa_1,\kappa_2)=(0,0),\ \delta m^2_{Q,33}<0$

$$\delta m_{Q,ab}^2 = d_Q \left((d_\phi + d_Q) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h(\frac{\Lambda}{M}) \frac{\Lambda^2}{M^2} \right) \kappa_a^* \kappa_b \tilde{\Lambda}^2$$

Increasing κ_1 & κ_2 increases κ^2 , making $\delta m_{Q,33}^2 > 0$

At best tuned point, for $(\kappa_1,\kappa_2)=(0,0),\ \delta m^2_{Q,33}<0$

$$\delta m_{Q,ab}^2 = d_Q \left((d_\phi + d_Q) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h(\frac{\Lambda}{M}) \frac{\Lambda^2}{M^2} \right) \kappa_a^* \kappa_b \tilde{\Lambda}^2$$

Increasing $\kappa_1 \& \kappa_2$ increases κ^2 , making $\delta m_{Q,33}^2 > 0$

Instead, we fix Λ , but vary M to fix the lightest eigenvalue in the m_Q^2 block

Note: Eigenvalues
$$[c\tilde{\Lambda}^2\mathbf{1}_3 - F(\kappa, \frac{\Lambda}{M})\tilde{\Lambda}^2\kappa_i^*\kappa_j] = \{c, c, c - F(\kappa, \frac{\Lambda}{M})\kappa^2\}\tilde{\Lambda}^2$$

Type I Q-class and U-class Constraints 2σ Constraints

Type I Q-class and U-class Constraints

What happened to the SUSY flavor problem?

Why so few constraints even for $\mathcal{O}(1)$ couplings?

Weak for several reasons:

- 1. U-class only in up sector safer than down <
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at} \sim 3 \text{ TeV}$
- 3. Effective operator bounds can exaggerate the problem
- 4. Flavor violation is from rank 1 tensor, suppresses FV a bit
- 5. Chiral Flavor Violation (χ FV) Flavor Texture

Weak for several reasons:

- 1. U-class only in up sector safer than down
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at} \sim 3 \text{ TeV} \blacktriangleleft$
- 3. Effective operator bounds can exaggerate the problem
- 4. Flavor violation is from rank 1 tensor, suppresses FV a bit
- 5. Chiral Flavor Violation (χ FV) Flavor Texture

Weak for several reasons:

- 1. U-class only in up sector safer than down
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at} \sim 3 \text{ TeV}$
- 3. Effective operator bounds can exaggerate the problem <
- 4. Flavor violation is from rank 1 tensor, suppresses FV a bit
- 5. Chiral Flavor Violation (χ FV) Flavor Texture

From SUSY MIA:

$$\frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu d_L \right)^2 = \frac{\alpha_s^2}{216 \tilde{m}^2} \left(\delta_{12}^{LL} \right)^2 \left(\bar{s}_L \gamma^\mu d_L \right)^2 : \ \Lambda > 10^3 \text{ TeV} \Rightarrow \tilde{m} > 5 \text{ TeV}$$

Weak for several reasons:

- 1. U-class only in up sector safer than down
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at} \sim 3 \text{ TeV}$
- 3. Effective operator bounds can exaggerate the problem
- 4. Flavor violation is from rank 1 tensor, suppresses FV a bit <
- 5. Chiral Flavor Violation (χ FV) Flavor Texture

We fix lightest e.value: $M^2_{Q,ij} \sim M^2 \mathbf{1} - X \kappa_i \kappa_j \Rightarrow \{M^2, M^2, M^2 - X \kappa^2\}$

$$X\kappa^2 \sim M^2 \Rightarrow \delta_{ij}^{LL} \sim \frac{3\kappa_i\kappa_j}{2(\kappa_1^2 + \kappa_2^2 + \kappa_3^2)} \quad \text{for } \kappa_1 = \kappa_2 = \kappa_3, \quad \delta_{ij}^{LL} \sim \frac{1}{2}$$

Weak for several reasons:

- 1. U-class only in up sector safer than down
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at} \sim 3 \text{ TeV}$
- 3. Effective operator bounds can exaggerate the problem
- 4. Flavor violation is from rank 1 tensor, suppresses FV a bit
- 5. Chiral Flavor Violation (χ FV) Flavor Texture \prec

Type I Q-class and U-class Constraints $_{\chi\text{FV Texture}}$

Q-class EGMSB mass matrix has FV in LL and select LR/RL elements

Evans (UIUC)

 χ FV from EGMSB

November 13, 2014 23 / 28

Several factors work in the same direction:

$$rac{\Delta m_{K}({
m Anarchy})}{\Delta m_{K}(\chi{
m FV})} \sim$$

 χ FV: Contributes to O_V^{LL} ONLY $O_V^{LL} = (\bar{s}\gamma^{\mu}P_Ld)^2$

Anarchy: All wilson operators $O_S^{LR} = (\bar{s}P_Ld)(\bar{s}P_Rd)$

Several factors work in the same direction: $\frac{\Delta m_{K}(Anarchy)}{\Delta m_{K}(\chi FV)} \sim 40$

- χ FV: Contributes to O_V^{LL} ONLY $O_V^{LL} = (\bar{s}\gamma^{\mu}P_Ld)^2$
 - HME: $\frac{8}{24}B_V^{LL} \sim 0.19$

Anarchy: All wilson operators $O_S^{LR} = (\bar{s}P_L d)(\bar{s}P_R d)$

• HME:
$$\frac{6}{24}B_S^{LR}R_K \sim 6.6$$

Several factors work in the same direction: $\frac{\Delta m_{K}(\text{Anarchy})}{\Delta m_{K}(\chi \text{FV})} \sim 1200$

- χ FV: Contributes to O_V^{LL} ONLY $O_V^{LL} = (\bar{s}\gamma^{\mu}P_Ld)^2$
 - HME: $\frac{8}{24}B_V^{LL} \sim 0.19$ MIA factor: $\frac{\alpha_s^2}{216} \left(\delta_{d,12}^{LL}\right)^2$

Anarchy: All wilson operators

$$O_S^{LR} = (\bar{s}P_L d)(\bar{s}P_R d)$$

 $\begin{array}{l} \blacktriangleright \text{ HME: } \frac{6}{24}B_S^{LR}R_K \sim 6.6 \\ \hline \text{ MIA factor: } \frac{23\alpha_s^2}{180} \left(\delta_{d,12}^{LL} \delta_{d,12}^{RR} \right) \end{array}$

Several factors work in the same direction: $\frac{\Delta m_{K}(\text{Anarchy})}{\Delta m_{K}(\chi \text{FV})} \sim 6000 \sim 75^{2}$

- χ FV: Contributes to O_V^{LL} ONLY $O_V^{LL} = (\bar{s}\gamma^{\mu}P_Ld)^2$
 - ► HME: ⁸/₂₄ B^{LL}_V ~ 0.19
 ► MIA factor: ^αs²/₂₁₆ (δ^{LL}_{d,12})²
 ► Running: (^α(m_{SUSY})/_{α_s(2 GeV)})^{6/23} ~ 0.7

Anarchy: All wilson operators

$$O_S^{LR} = (\bar{s}P_L d)(\bar{s}P_R d)$$

Several factors work in the same direction: $\frac{\Delta m_K(\text{Anarchy})}{\Delta m_K(\chi \text{FV})} \sim 6000 \sim 75^2$

- χ FV: Contributes to O_V^{LL} ONLY $O_V^{LL} = (\bar{s}\gamma^{\mu}P_Ld)^2$
 - ► HME: ⁸/₂₄ B^{LL}_V ~ 0.19
 ► MIA factor: ^α/_s (δ^{LL}_{d,12})²
 ► Running: (^α/_s(m_{SUSY})/⁶/₂₃ ~ 0.7

Anarchy: All wilson operators

$$O_S^{LR} = (\bar{s}P_L d)(\bar{s}P_R d)$$

Work together to make Δm_X constraints weak!

Future Constraints / Discovery Prospects

On the 3-5 year time scale, several things should happen:

Future Constraints / Discovery Prospects

On the 3-5 year time scale, several things should happen:

- NA62 will measure $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ to 10%
- A full (long-distance included) prediction of Δm_K (RBC and UKQCD)
- Incremental lattice improvements to Δm_{B_d}
- \blacktriangleright Mild experimental improvements for $b
 ightarrow q \gamma$

Future Constraints / Discovery Prospects

On the 3-5 year time scale, several things should happen:

- NA62 will measure $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ to 10%
- A full (long-distance included) prediction of Δm_K (RBC and UKQCD)
- Incremental lattice improvements to Δm_{B_d}
- Mild experimental improvements for $b
 ightarrow q \gamma$

Observable	Improvement	Projected
Δm_K	Theory	10%
Δm_{B_d}	Theory	$\sim\!10\%$
Δm_{B_s}	Theory	5%
Δm_D	None	-
$Br(K^+ o \pi^+ u ar{ u})$	Experiment	10%
$Br(B ightarrow X_s \gamma)$	Experiment	7%
$Br(B \rightarrow X_d \gamma)$	Experiment	24%
$Br(B_s \rightarrow \mu^+ \mu^-)$	Experiment	15%
$Br(B_d o \mu^+ \mu^-)$	Experiment	\sim 35%

25 / 28
Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\delta m_{Q,33}^2 = -y_t^2 (2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2$$

$$\frac{\ln U \Phi_{H_u} \Phi_Q}{\delta m_{Q,33}^2 = -4y_t^2 \kappa_3^* \kappa_3 \tilde{\Lambda}^2}$$

Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\frac{\ln UH_u\Phi_Q}{\delta m_{Q,33}^2 = -y_t^2(2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2} \qquad \qquad \frac{\ln U\Phi_{H_u}\Phi_Q}{\delta m_{Q,33}^2 = -4y_t^2\kappa_3^*\kappa_3\tilde{\Lambda}^2}$$

• Could try to solve for $m_h = 125$ in 5 dimensions

• i.e., fix $(\kappa_1, \kappa_2, \kappa_3, \Lambda/M)$, increase M to get $m_h = 125$ GeV

Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\frac{\ln UH_u\Phi_Q}{\delta m_{Q,33}^2 = -y_t^2(2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2} \qquad \qquad \frac{\ln U\Phi_{H_u}\Phi_Q}{\delta m_{Q,33}^2 = -4y_t^2\kappa_3^*\kappa_3\tilde{\Lambda}^2}$$

• Could try to solve for $m_h = 125$ in 5 dimensions

- i.e., fix $(\kappa_1, \kappa_2, \kappa_3, \Lambda/M)$, increase M to get $m_h = 125$ GeV
- But, 1) computationally unfeasible
- and 2) that suppresses importance of κ₃ and reintroduces little A m_h (The reason Type I Higgs models have high tuning)

Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\frac{\ln UH_u\Phi_Q}{\delta m_{Q,33}^2 = -y_t^2(2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2} \qquad \qquad \frac{\ln U\Phi_{H_u}\Phi_Q}{\delta m_{Q,33}^2 = -4y_t^2\kappa_3^*\kappa_3\tilde{\Lambda}^2}$$

• Could try to solve for $m_h = 125$ in 5 dimensions

- i.e., fix $(\kappa_1, \kappa_2, \kappa_3, \Lambda/M)$, increase M to get $m_h = 125$ GeV
- But, 1) computationally unfeasible
- and 2) that suppresses importance of κ₃ and reintroduces little A m_h (The reason Type I Higgs models have high tuning)
- These models require severe alignment in the κ_3 direction to be viable

Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\frac{\ln UH_u\Phi_Q}{\delta m_{Q,33}^2 = -y_t^2(2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2} \qquad \qquad \frac{\ln U\Phi_{H_u}\Phi_Q}{\delta m_{Q,33}^2 = -4y_t^2\kappa_3^*\kappa_3\tilde{\Lambda}^2}$$

• Could try to solve for $m_h = 125$ in 5 dimensions

- i.e., fix $(\kappa_1, \kappa_2, \kappa_3, \Lambda/M)$, increase M to get $m_h = 125$ GeV
- But, 1) computationally unfeasible
- and 2) that suppresses importance of κ₃ and reintroduces little A m_h (The reason Type I Higgs models have high tuning)
- These models require severe alignment in the κ_3 direction to be viable

(Note: flavor is fine in narrow window of validity)

Evans (UIUC)

 χ FV from EGMSB

	Туре І			Type II	
	Higgs	Q-class	<u>U-class</u>	w/ mixing	w/o mixing
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi ilde \Phi$	$\lambda U \Phi ilde \Phi$	$\lambda H_u Q \Phi_U$	$\lambda U E \Phi_{\bar{D}}$
Tuning:	BAD	GOOD	GOOD	GOOD	BAD
Flavor:	MFV	OKAY	OKAY	TACHYONS	DON'T CARE!

Summary & Future Directions

- ▶ We examined tuning in EGMSB models that get $m_h = 125$ GeV
- ► Wrote FormFlavor to investigate flavor in this non-MFV model
- Flavor constraints are weak in these models
 - Mostly due to the special χ FV texture
 - Δm_D and $b \rightarrow s \gamma$ dominate
 - $K^+ \rightarrow \pi^+ \nu \nu$, Δm_K , and Δm_{B_d} could constrain soon

▶ $m_h = 125$, no SUSY @ LHC8 & SUSY flavor correlated problems!

Summary & Future Directions

- ▶ We examined tuning in EGMSB models that get $m_h = 125$ GeV
- ▶ Wrote FormFlavor to investigate flavor in this non-MFV model
- > Flavor constraints are weak in these models
 - Mostly due to the special χ FV texture
 - Δm_D and $b
 ightarrow s \gamma$ dominate
 - $K^+ \to \pi^+ \nu \nu$, Δm_K , and Δm_{B_d} could constrain soon
- ▶ $m_h = 125$, no SUSY @ LHC8 & SUSY flavor correlated problems!

Future directions

- ▶ We only focused on flavor observables, we want to look at CP as well
- The χ FV texture deserves further study on its own (like MFV)
- We plan to make FormFlavor public
- \blacktriangleright Collider phenomenology is very interesting, especially in the FV case
 - Complete model for Flavored Naturalness (Blanke, Giudice, Paradisi, Perez, Zupan)

Evans (UIUC)

 χ FV from EGMSB