

ALICE IP chamber aperture reduction (VASCO simulations)

G. Lanza

TREX meeting

- 1. Vacuum LHC baseline
- 2. ALICE new central beampipe
- 3. Static vacuum profile
- 4. Static vacuum gas composition
- 5. Dynamic vacuum profile with electron cloud
- 6. Dynamic vacuum gas composition
- 7. Vacuum Stability: critical current in case of pumping speed reduction
- 8. Vacuum layout

Vacuum LHC baseline

• To grant 100h beam lifetime:

P< 1x10⁻⁸ mbar, H2 equivalent

- Uncoated (no NEG) surfaces will suffer from e-cloud phenomena during machine startup
- The LHC strategy for vacuum cleaning and beam pipe conditioning (reduction of the SEY) is scrubbing
 - 1 to 10 mC/mm² are required
 - The achieved level of conditioning depends of the time spent above the multipacting threshold

ALICE new central beam pipe

ALICE new central beam pipe

Moving the sector value assembly towards the left side of RB24 will also distance the small pressure bump (see next chart) before the interaction point

Static Vacuum

Static Vacuum

Static Vacuum

Dynamic Vacuum at IP

electron cloud

Dynamic Vacuum

Dynamic Vacuum

Vacuum Stability

- No evidence of vacuum stability runaway issue in case of
 - NEG 90% saturated
 - Ion pumps all out of order
 - NEG 90% saturated and ion pumps all out of order
- Checked for HL-LHC current parameters
 - The new central chamber is validated with this vacuum stability study.

Vacuum Layout

 Installation of a penning gauge on the IP sector: probably integrated in the sector valve on the right

 Move the sector valve further towards the left (and add a NEG chamber in the IP?!?) to distance the pressure bump from the interaction point.

