IV. Present Status of RENO & Daya Bay

RENO for Neutrino Mixing Angle θ_{13}

Experiments	Location	Thermal Power (GW)	Distances Near/Far (m)	Depth Near/Far (mwe)	Target Mass (tons)
Double-CHOOZ	France	8.7	280/1050	60/300	10/10
RENO	Korea	17.3	290/1380	120/450	16/16
Daya Bay	China	11.6	360(500)/1985(1613)	260/910	40×2/80

Data –taking is expected to start in mid 2010. Korea-Russia collaboration

Schematic View of Underground Facility

Near & far tunnels are completed

(2008.6~2009.3)

by Daewoo Eng. Co. Korea

Detector vertical halls are ready

(2008.12~2009.2)

Buffer steel tanks are installed

(2<u>009.6~2009.9)</u>

by NIVAK Co. Korea

Mockup Detector Assembly

The Daya Bay Nuclear Power Plant

- •12th most powerful in the world (11.6 GW)
- Top five most powerful by 2011 (17.4 GW)
- Adjacent to mountain, easy to construct tunnels to reach underground labs with sufficient overburden to suppress cosmic rays
- China, Taiwan, US, Russia and Czech
 Data –taking is expected in summer 2011.

4 x 20 tons target mass at far site

Far site 1615 m from Ling Ao 1985 m from Daya Overburden: 350 m

Daya Bay Layout

Ling Ao Near site 500 m from Ling Ao Overburden: 112 m

465 m

Constru

tunnel

Water hall E 0120 Filling hall entrance

ш 006

295 m

Daya Bay

NPP, 2×2.9 GW

Ling Ao-II NPP (under construction) 2×2.9 GW in 2010

Ling Ao NPP, 2×2.9 GW

Daya Bay Near site 363 m from Daya Bay Overburden: 98 m

> **Horizontal Tunnel** Total length 3200 m

Tunnel Construction Status

Pool Excavation in DBY Hall - Aug 09

Main Tunnels Join - June 09

Detector Assembly

AD Components

Mounting of non-reflecting panels on ladder

V. R&Ds for Energy Frontier Projects

International Linear Collider

ATF2 beam line (Dec.2008~)

Photo-cathode RF gun (electron source)

S-band Linac ∆f ECS for multi-bunch beam

ATF2 Beamline

Final Focus beamline

Magnets and Movers (IHEP, SLAC, KEK) C-band BPM (PAL, SLAC, KEK) Support Table (KEK)

IP-BSM (Tokyo Univ, KEK)

Final Doublet system

Magnets and Movers (SLAC) S-band BPM (KNU) Supports and Table (LAPP)

STF Phase1.0 4 TESLA-style cavities in a short cryomodule

Cool-down test: May 2008 – Dec. 2008 Experience of ILC cryomodule technology

cryomodule assembly, 2k cryogenics technology, low heat load technology, cavity control for high performance for pulsed RF, LLRF digital control technology, RF power distribution, Qext control.

Loaded Q control using external phase shifter and reflector. +/-15% QL control was possible.

Cavity assembly in clean room

Cryomodule cold-mass assembly

S1-Global

Aiming 31.5MV/m operational cryomodule, by international collaboration

assembly : Oct 2009 - April 2010 operation : May 2010 – December 2010 MOU between INFN and KEK : exist MOU between DESY and KEK : first version was exchanged MOU between FNAL and KEK : first version was exchanged MOU between SLAC and KEK : start soon

Module-A : existing KEK cryostat + 4 new KEK cavities Module-C : INFN cryostat + 2 DESY cavities + 2 FNAL cavities power distribution : 2 SLAC VTO + existing KEK WG

STF phase2.0 accelerator

Cavities : 2+26 Klystrons : 5MW + 5MW + 10MW Beam : 850MeV, 1ms train、9mA、 5Hz

ILC structure beam, high pressure vessel regulation, beam user section in downstream

Component

Photocathode-RFgun : DESY-FNAL gun cavity, JINR-IAP Laser, ATF photo-cathode Capture cavities: two 9-cell SC cavities in short cryomodule Cryomodule: three ILC cryomodules with 26 SC cavities Klystron: horizontal 10MW multi-beam klystron Modulator: bouncer type modulator waveguide : Linear-type power distribution

IRQ Development Required for Luminosity Upgrade

Parameters	LHC start> Upgrade	1.0 - Nb ₃ Al 17 T Nb ₃ Al 4.2 K
Field gradient Coil inner radius Yoke outer radius Magnetic length Peak field in coil Current Superc. load-line ratio Inductance Stored energy Mag. force/pole (octant) Fx Fy	215 T/m> 250 T/m 35 mm> 50 mm 235 mm 6.37 m 8.63 T> ~ 15 T 7149 A 80 % 87.9 mH 2.24 MJ 1.19 MN/m -1.37 MN/m	0.9 • #1 ME282 • #2 ME282 (40% deformed) • #3 Cu-clad ME365 • #4 Ag-internal ME378 • #5 Ta matrix • (Nb,Ta,Ti) ₃ Sn bronze wire • VAC Nb ₃ Sn bronze wire

KEK Testing Programs toward X-band CLIC

• The system can be run continuously during the linac operatio **Klystrons** Modulator Contro ow-loss Bunker

VI. Other Asian Activities

Mashines&Detectors at Budker INP

A few generations of the colliders and detectors

Collider	2E, Gev	Detectors	Operation
VEP-1 (e⁻e⁻)	0.32	2 detectors	1965-67
VEPP-2	1.4	3 detectors	1967-72
VEPP-3 (buster, SR, Nucl. 1	2.0 Phys)	2 detectors	1972-
VEPP-4	11.0	OLYA, MD-1	1980-85
VEPP-2M	1.4	OLYA, ND, CMD SND, CMD-2	1974-2000
VEPP-4M	11.0	KEDR	2000-
VEPP-2000	2.0	SND, CMD-3	2009
Tau-Charm			?

•	Study of hadronic cross sections
	e⁺e⁻→2h, 3h, 4h, h= π,K,η,
•	Precision measurement of
	$R=\sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^-)$
	$\rightarrow \mu^{+}\mu^{-}$)
•	Study of light vector mesons
	excitations: ρ', ρ'', α', φ',
•	CVC testing by comparison of the
	energy dependence of $e^+e^- \rightarrow hadr$.
	(I=1) cross sections with spectral
	functions in $ au$ -decays
•	Measurement of the nucleons
	electromagnetic form factors and
	search for <i>NN- resonances</i>
•	Study of <i>e⁺e⁻ -annihilation</i> into hadron

at low energy by radiative return (ISR)

VEPP-2000 Collider

Round beams (beam-beam effects suppressed), 2E=2000 MeV

Status: in operation since 2009

Novosibirsk Tau-Charm factory

L = 2×10**35 cm-2s-1, Variable energy Ecm= 2 – 5 GeV

(Mashine in Levichev's presentation)

BEPCII: a high luminosity double-ring collider

Detector installation and tuning completed April, and moved to IR May 2009

First hardron event observed on BESIII on July 19.

First data at psi(2S)

- > Aug.: 1.3pb⁻¹; Sep.: 2.3pb⁻¹;
- > Oct.: 14.4pb⁻¹; Nov.: 4.8pb⁻¹;
- Total integrated luminosity: 22.8pb⁻¹, 13M events
- Detector performance reached the design goal
- First physics results: see talk by Yifang Wang

INO India-based Neutrino Observatory

Magnetized Iron Calorimeter Detector

Building up Multi-Lateral Collaboration Body : KEK (Japan), IHEP (China). TIFR, RRCAT (India), Seoul U. (Korea), BINP (Russia)

Encouraging accelerator/ detector applications

Kick-off workshop : in December 2009