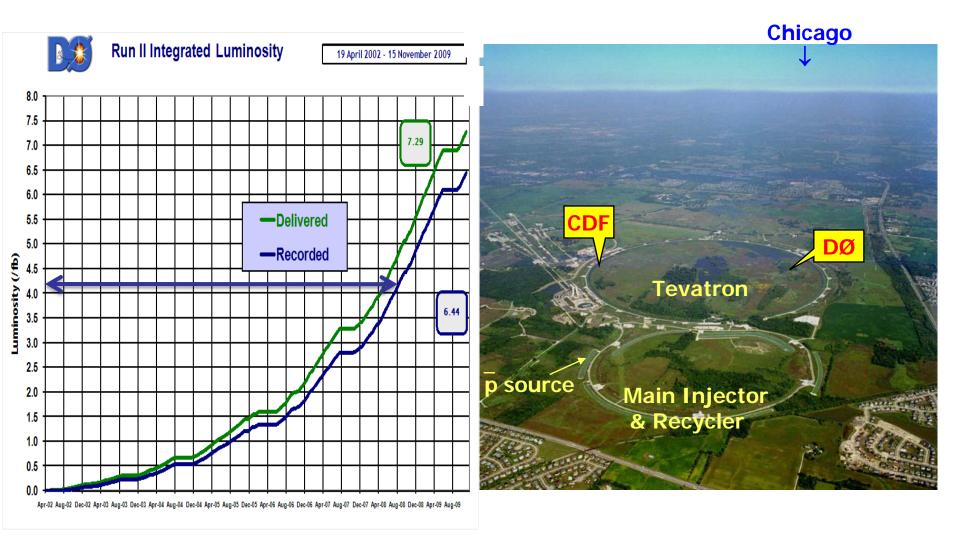


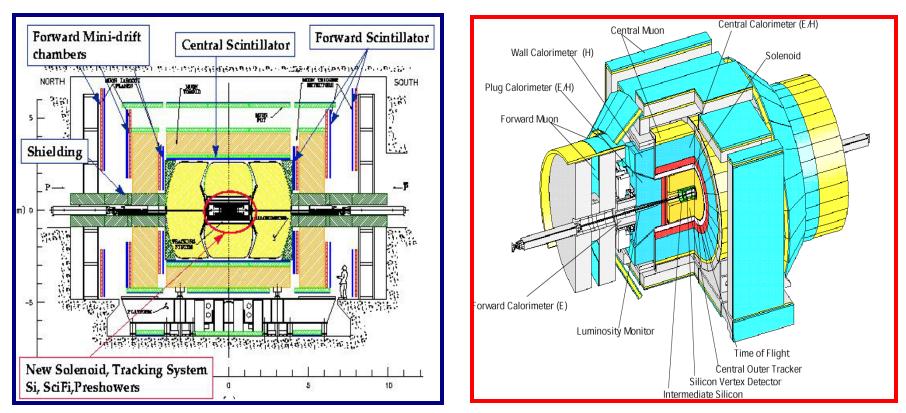
Marie-Claude Cousinou

CPPM-Marseille

Université de la Méditerranée


On behalf of the CDF and D0 collaborations

- ***** Searches for new high mass resonances decaying in $\pounds \overline{\ell}$ and VV
- Search for quark compositeness
- Searches for Leptoquarks
- Search for a heavy fourth generation down-type quark b'
- Search for Neutral Long-Lived Particles (NLLP)
- Conclusion


Tevatron experiments – Run II

Analyses presented here use up to ~4.1 fb⁻¹

D0

Both general purpose detectors well understood and highly efficient with:

Excellent calorimeters and muon chambers coverage

Precision tracking (Silicon Vertex Detector)

Data taking efficiency ~90 %

New high mass resonances decaying in f f or VV

Many extensions of the SM model predict new heavy particles X decaying in $f \bar{f}$, VV (Z', W', Graviton) such as Supersymmetry, Extra Dimensions, Little Higgs or Technicolor.

W' and *Z*' are generated using a Sequential Standard Model (SSM) parametrization . Results on *Z*' are also given in the scheme of E_6 models . In these models 2 additional neutral massive spin1 gauge bosons that can mix with an arbitrary mixing angle are predicted . The different *Z*' studied in the following analyses correspond to specific values of the mixing angle.

In extra spatial dimensions models such as the Randall-Sundrum (RS) model used here, the gravitons G propagate in the extra dimension and the parameters of the RS model are the M_G mass of the first excited mode of the graviton and the dimensionless coupling to the SM fields k/M_{pl} , where k^2 is the space time curvature in extra dimension and M_{pl} the reduced Planck mass. k/M_{pl} is expected to be between 0.01 and 0.1.

In extra dimension models, the cross sections for jets production are modified due to virtual exchanges of Kaluza-Klein excitations:

✤ KK excitations of the graviton in the Large Extra Dimension model ADD. Different formalisms are used : GRW and HLZ. The parameters are the effective Planck scale M_S and , in the case of the HLZ model , the number of extra dimensions n_d.

♦ KK excitations of the SM gauge bosons in the TeV⁻¹ ED model. In this model the parameter is the compactification scale M_C

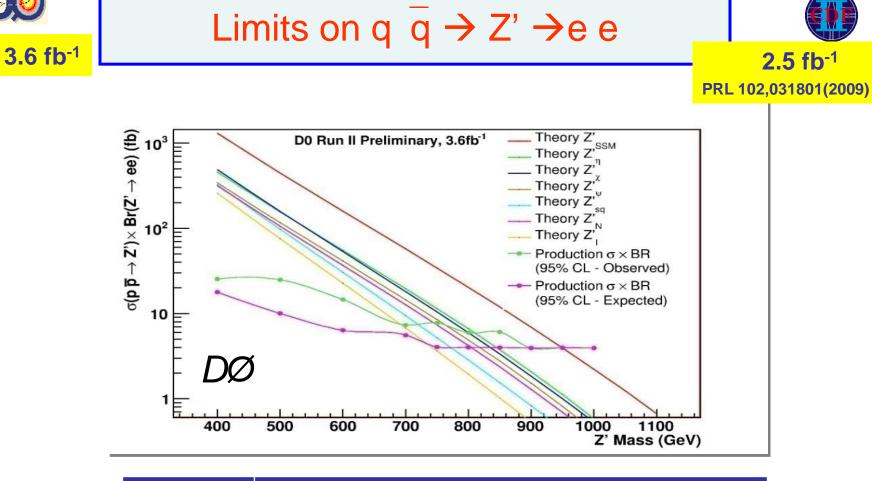
Search for High Mass ee resonances

2.5 fb⁻¹ Run 233604 Evt 7403139 Tue Jun 12 00:44:32 2007 PRL 102, 031801(2009) 1 MET EM ICD em particle MG HAD 1 electron in central ($|\eta| < 1.1$), 2nd either central or forward 2 central ($|\eta| < 1.1$) EM ET (GeV $(E_T > 25 \, GeV)$ clusters with track match If both central : opposite charge $(E_{\tau} > 25 \text{ GeV})$ Main BG $Z/\gamma^* \rightarrow ee$ CDF Events/(10 Ge/ Events/10 GeV D0 Run II Preliminary, 3.6fb⁻¹ data 70 Drell-Yan Events/(10 GeV/ Instrumental Other SM 60 | DØ 50 160 180 200 220 240 260 280 300 320 340 M(e⁺e⁻) (GeV/c²) 40 10 30 10⁻¹ 20 10⁻² 10 10⁻³ 0 160 340 180 200 220 240 260 280 300 320

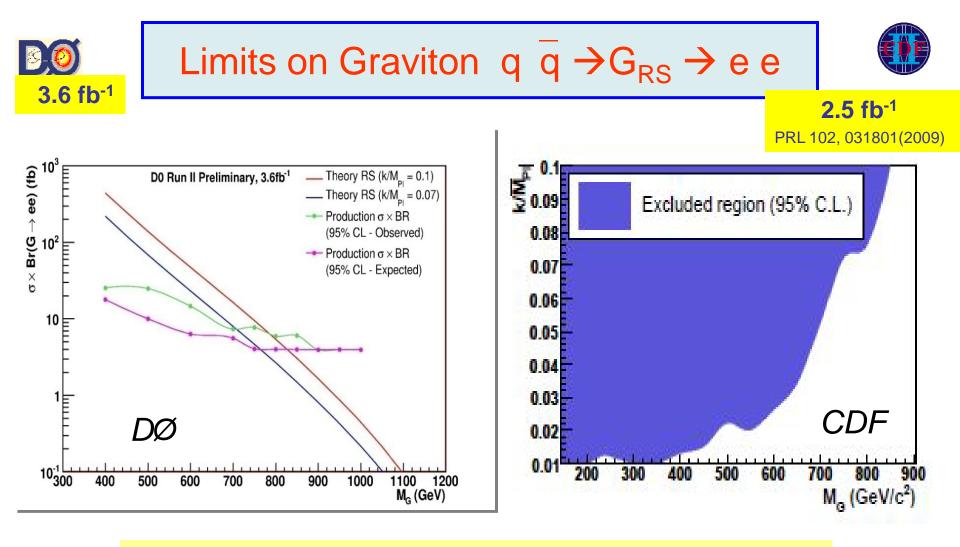
10-4

200

100

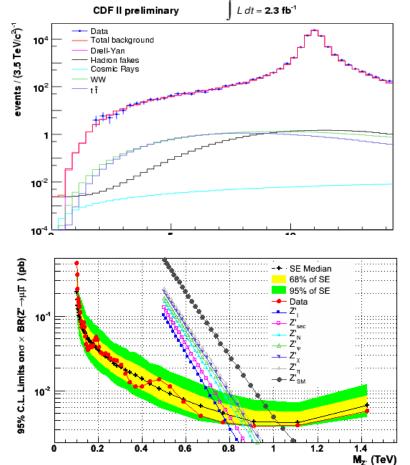

300

400 500 600 700 800 900 1000


M(e⁺e⁻) (GeV/c²)

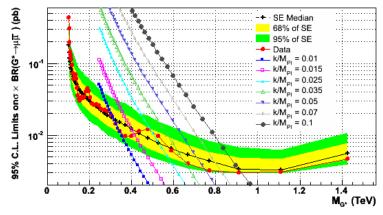
the 2.5 σ excess observed by CDF around 240 GeV not confirmed by D0

Mee (GeV)


	Obs. 95% C.L lower limits on Z' masses (GeV)						
Z' model	Z' _{SM}	Z'_{Ψ}	Ζ'χ	Ζ' _η	Z'ı	Z' _{seq.}	Z' _N
CDF	963	851	862	930	735	792	837
D0	950	763	800	810	692	719	744

95%C.L. RS $(k/M_{pl}) = 0.1$ CDF obs. = exp. $M(G_{RS}) > 848 \text{ GeV}$ D0 obs. (exp.) $M(G_{RS}) > 786$ (826) GeV

Search for High-Mass µµ resonances



	Obs. 95% C.L lower limits on Z' masses						
Z' model	Z′ _{SM}	$\mathbf{Z'}_{\Psi}$	Ζ' _χ	Z'_{η}	Z'ı	Z' _{seq.}	Z′ _N
M _{lim} (GeV)	1030	878	892	904	789	821	861

Pair of oppositely-charged muons with $P_T > 30 \text{ GeV}$

Inverse mass $m_{\mu\mu}^{-1}$ used because the detector resolution is approximatively constant ($\approx 0.17 \text{ TeV}^{-1}$) over the whole plot range

Narrow resonance would appear as an excess of events in 3 adjacent bins

k/M _{pl}	0.1	0.05	0.025	0.01
M _{lim} (GeV)	921	746	493	293

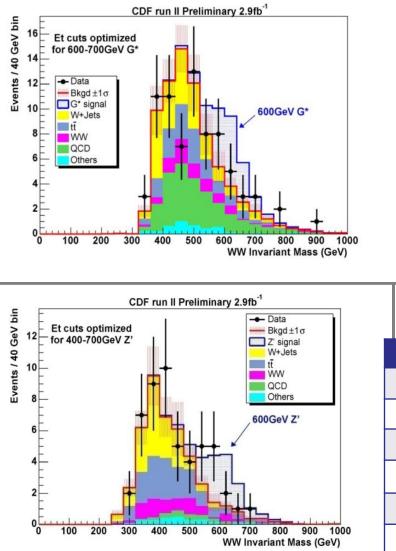
Search for WW or WZ resonances final state: electron , missing $E_{\rm T}$ and 2 jets

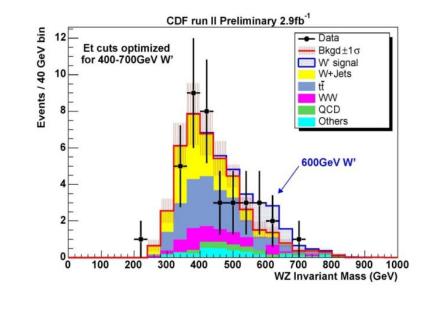
- $e + E_T^{miss} \rightarrow W$ (both >30 GeV)
- 2 or 3 jets $(E_T > 30 \text{ GeV})$ used to form the other W or the Z with:

 $M_{jj} \in$ [65-95 GeV] (W) and $M_{jj} \in$ [70-105 GeV] (Z)

• H_T (=sum of all E_T) > 150 GeV

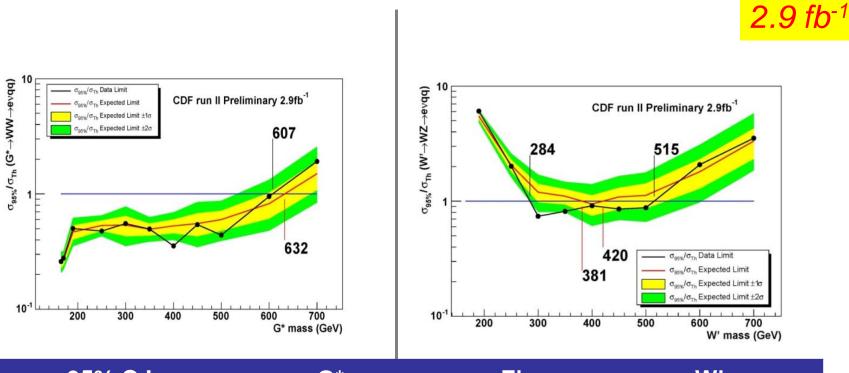
WW3577 eventstotal BG: 3349±20.9±513.7W (e v) + jets :58.5%WZ3735 eventstotal BG: 3354±20.4±535.3W (e v) + jets :59.0%

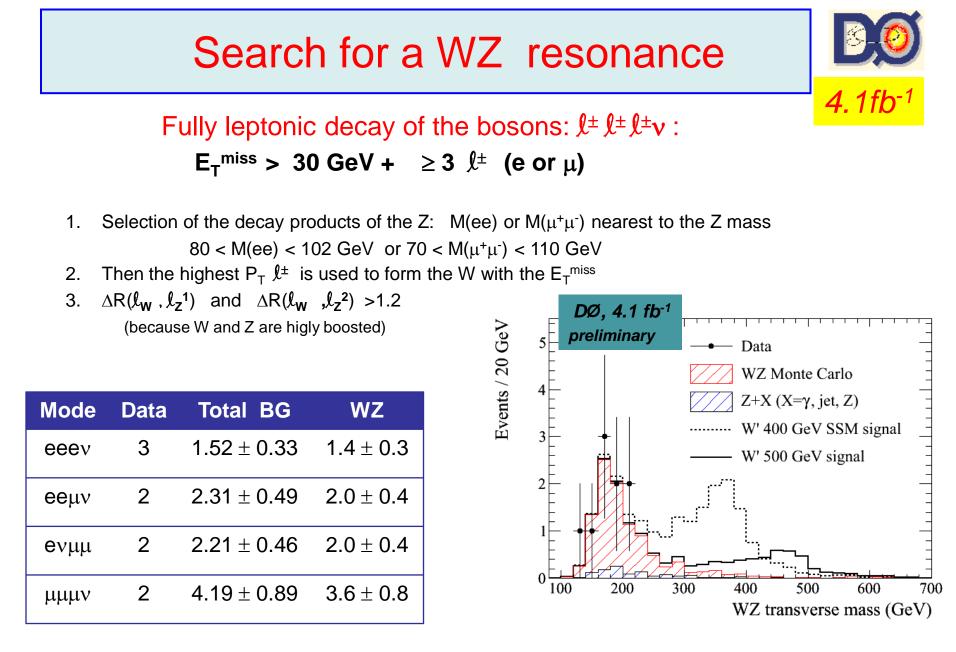

For each of the mass of the G^* , Z' and W', higher E_T cuts are tuned to find the best expected cross section limit :


As an example:

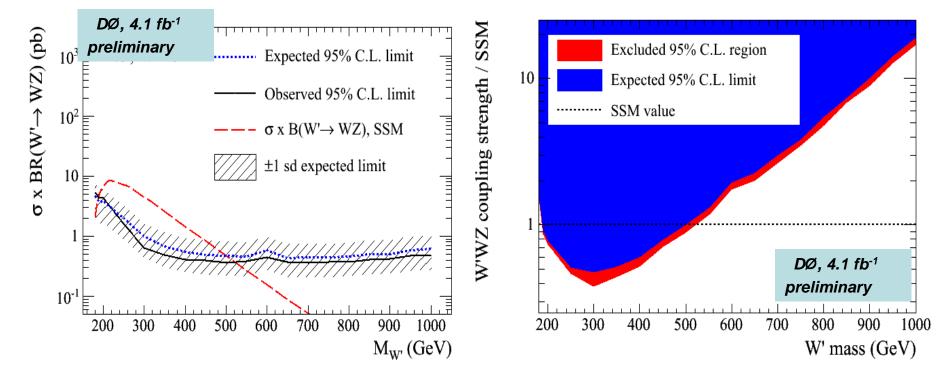
◆ G^{*} (*M*=600 GeV) one of the decay products of each W should have E_T >120 GeV ◆ Z' or W' (*M*=600 GeV) the 4 decay products of the WW or WZ have E_T >60 GeV

Search for WW or WZ resonances




	G*→ WW	Z' → WW	W' → WZ
Data (events)	75	51	38
Total BG	75.6±2.5±11.2	43.2 ±2.3±5.7	41.3±1.5±6.9
t tbar	20%	35%	37%
W(ev)+jets	28%	33%	37%
WW	11%	15%	13%
MJ	33%	5%	6%

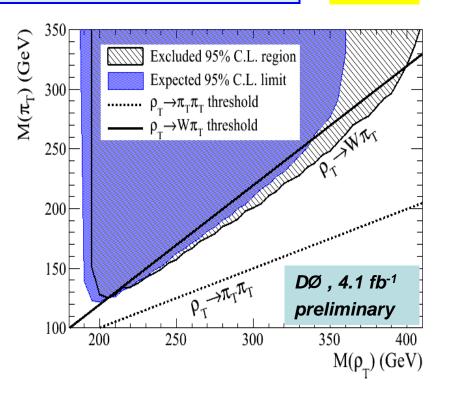
Search for WW or WZ resonances


95% C.L.	G *	Ζ'	W'
Expected Exclusion	< 632 GeV	257 – 630 GeV	381 – 420 GeV
Observed Exclusion	< 600 GeV	247 – 545 GeV	284 – 515 GeV

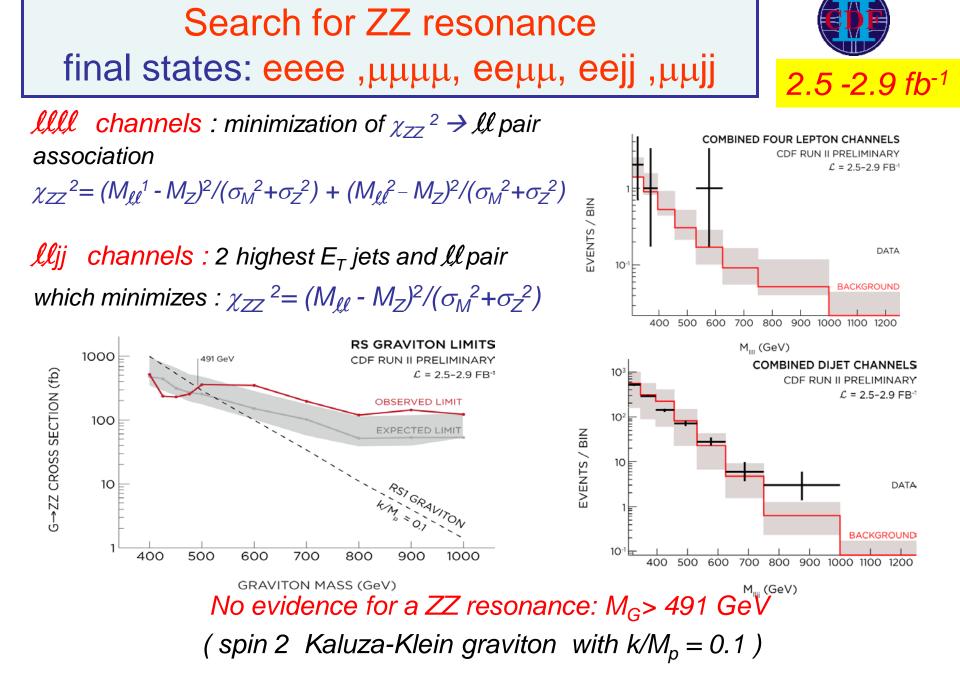
 $M_T = ((E_T^{Z} + E_T^{W})^2 - (P_x^{Z} + P_x^{W})^2 - (P_y^{Z} + P_y^{W})^2)^{1/2}$

Search for a WZ resonance

Assuming SSM production 188 < M(W') < 520 GeV is excluded (obs. lim) 188 < M(W') < 497 GeV expected exclusionregion Exclusion in the plane : W'WZ trilinear coupling normalized to the SSM value as function of the W' mass

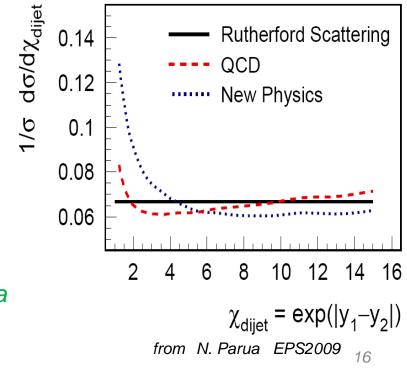

Search for a WZ resonance

In the low scaleTechnicolor model (LSTC), the particle ρ_{T} is predicted to be below 500 GeV.


The branching fraction $BR(\rho_T \rightarrow WZ)$ depends strongly of the relative masses of the technipion π_{T} and technirho ρ_{T}

If $M(\pi_{T})$ is smaller or of the order of $M(\rho_{T})$ ρ_{T} decays predominantly to a pair WZ

For $M(\rho_T) < M(\pi_T) + M(W)$ $208 < M(\rho_{T}) < 408 \text{ GeV}$ is excluded (95%C.L.) Most of the allowed phase space where $\rho_{\tau} \rightarrow WZ$ is dominant is excluded


Searches for quark compositeness and extra spatial dimensions Measurement of dijet angular distributions

Measurement of $\chi_{dijet} = exp(|y_1-y_2|)$ in bins of M_{jj} where the y_i (i=1,2) are the rapidities of the 2 leading jets.

For massless 2 -> 2 scattering, χ_{dijet} is related to the polar scattering angle in the partonic center-of-mass frame.

Rutherford scattering is independent of χ_{dijet} . In QCD the distribution shows small deviations from Rutherford scattering.

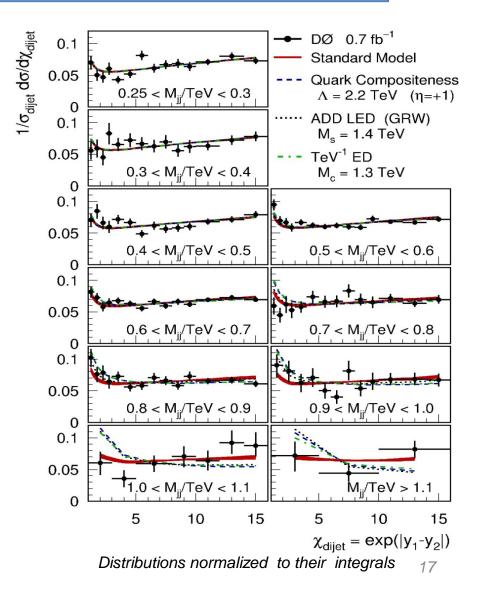
An excess at large M_{jj} and small χ_{dijet} would be a sign of new physics processes such as substructure of quarks or the existence of extra dimensions

0.7 fb⁻¹

PRL 103, 191803(2009)

Searches for quark compositeness and extra spatial dimensions

1.1 fb⁻¹


Quark compositenessCDF $\Lambda > 2.4 \text{ TeV}$ D0 $\Lambda > 2.9 \text{ TeV}$

Large extra dimensions (D0) 2 models:

1. ADD LED

Ms effective Planck mass GRW Ms > 1.66 TeV HLZ $M_{\rm S}$ > 1.97 TeV $(n_d=3)$

TeV⁻¹ ED parameter:
 M_c compactification scale
 M_c > 1.59 TeV

Some aspects of Leptoquark phenomenology

Predicted by many extensions of the SM connecting the quark and lepton sectors (GUTs, compositeness, extended Technicolor...).

Leptoquarks are color-triplet bosons which carry:

- * non-zero lepton L and baryon B numbers
- * fractional electrical charge Q=1/3, 2/3, 4/3, 5/3

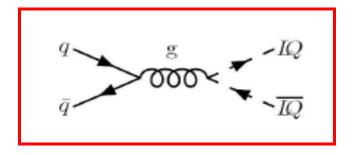
LQ states = scalar or vector

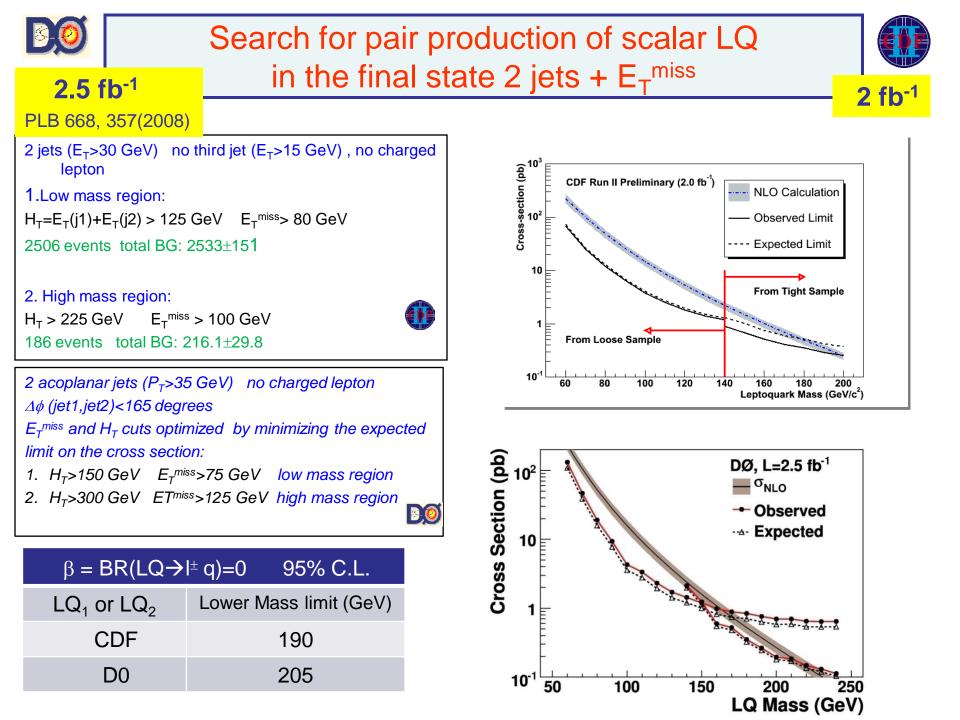
for scalar LQ, Lagrangian and production cross section only depend on M_{LQ} (and α_s)

but for vector LQs, they also depend on anomalous couplings λ_G and κ_{G^*}

3 generations of leptoquarks are predicted

Leptoquarks couple directly to leptons (I^{\pm} , v) and quarks : $\beta = Br(LQ \rightarrow Iq)$


3 types of final states

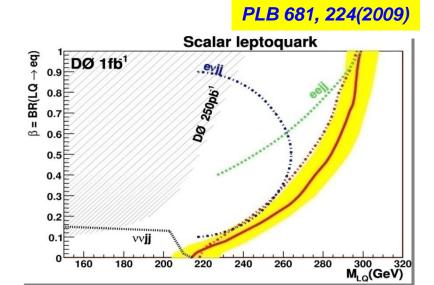

 $||jj \ \sigma \times Br(I^+I^-qq) \propto \beta^2 \qquad vvjj \quad \sigma \times Br(vvqq) \propto (1-\beta)^2 \qquad |vjj \ \sigma \times Br(I^\pm vqq) \propto 2\beta(1-\beta)$

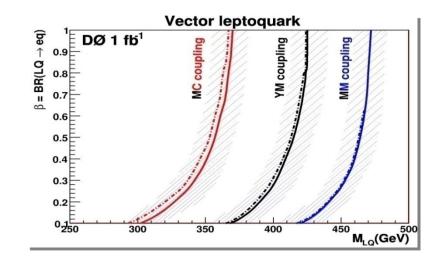
Pair production of LQs:

Dominant LO diagram, at Tevatron

for M_{LQ} >100 GeV/c²

Search for pair production of First-Generation Leptoquark

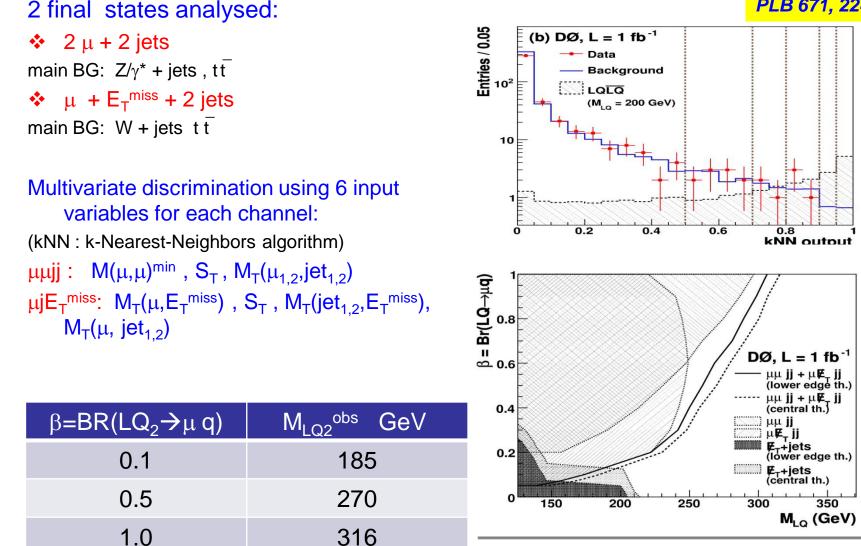

2 final states analysed:


♦ 2 e + 2 jets main BG: Z/γ* + jets, t t
♦ e + E_T^{miss} + 2 jets main BG: W + jets t t

Variables used for signal discrimination:

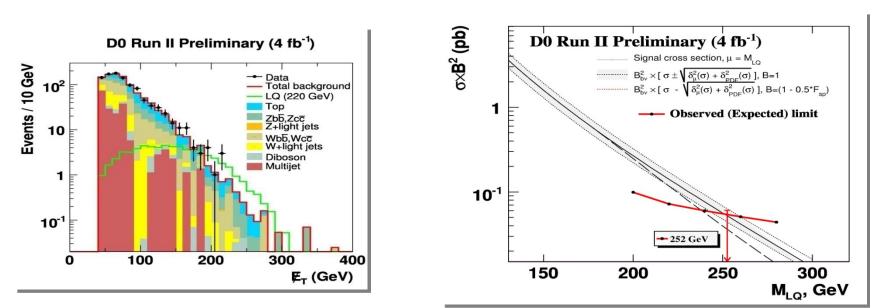
- ★ eejj M(e,e) , S_T= E_T(e1)+E_T(e2)+E_T(jet₁)+E_T(jet₂) limit from average M(e,jet) distribution
- ★ e j E_T^{miss} E_T(e), E_T(jet1) , E_T(jet2), E_t^{miss} limit from S_T distribution

	lower LQ mass limit GeV				
β	Scalar LQ	$\kappa_{\rm G} = 1$ $\lambda_{\rm G} = 0$	$ \begin{array}{l} \kappa_{\rm G} = 0 \\ \lambda_{\rm G} = 0 \end{array} $	$\kappa_{\rm G}$ = -1 $\lambda_{\rm G}$ = -1	
0.1	235	302	368	420	
0.5	284	357	415	464	
1	299	370	425	472	



1fb⁻¹

Search for pair production of Second-Generation Leptoquark


1 fb⁻¹ *PLB 671, 224(2009)*

Search for pair production of Third-Generation Leptoquark

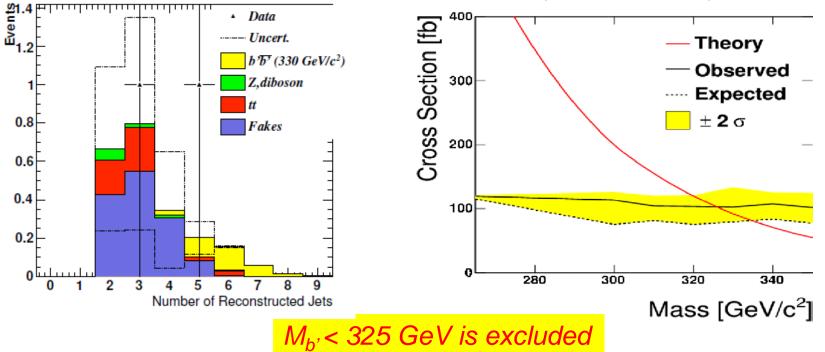
Pair production of LQ3 both decaying in b quark and V_{τ} Events with exactly 2 or 3 jets (E_T >20GeV) and E_T^{miss} >40GeV E_T^{miss} quality cuts appliedNN based b-tagging : 2 jets b-tagged (70% and 45% efficiencies)BG: largest contribution from W/Z +b b production and Top3 events selected(SM+MJ) expected: $3.2\pm0.3\pm0.6$ events

Assuming $B(LQ \rightarrow v b)=1$

a third-generation scalar LQ with M_{LQ} < 252 GeV is excluded

Search for a heavy fourth-generation down-type quark (b')

2.7 fb⁻¹


Pair production of b' decaying in Wt

- 2 same-charge leptons I (P_T > 20 GeV)
- > 1 b-tag jet + \geq 2 jets (P_T > 15 GeV)
- $E_T^{miss} > 20 \text{ GeV}$

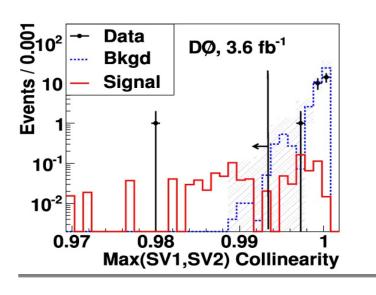
Bined likelihood fit in the number of jets of the ratio of the measured to the theoretical σ

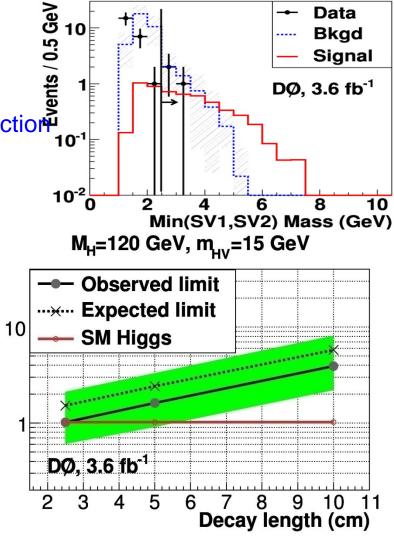
Data	2 (1 μμ, 1 μ e)		
Total BG	1.9± 1.4		
W + jets	1.4 ± 1.4		
t T	0.5 ± 0.05		
Z + dibosons	0.1 ± 0.05		

95% Limits for b' (CDF Run II Prelim 2.7/fb)

CDF Run II Preliminary (2.7 fb⁻¹)

Search for pair production of Neutral Long-Lived Particles decaying to bb


Hidden-valley HV models predict production of HV particles which hadronize producing « v-hadrons » which could be long-lived.


3.6 fb⁻¹ PRL 103 071801 (2009)

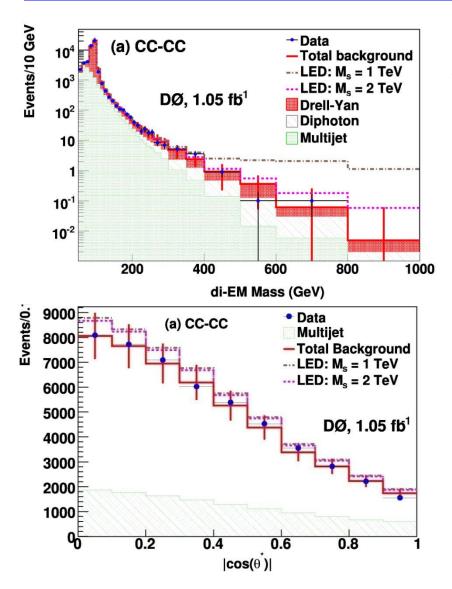
model used as benchmark : $gg \rightarrow H \rightarrow v$ -hadron + v-hadron $\rightarrow (b \ \overline{b})$ (b $\overline{b})$

σ(H+X)×BR(H→HVHV)×BR²(HV→bb) (pb)

vertices v +-momenta of the tracks (π mass) Collinearity : cos(θ) between the PV-SV direction And the sum of the momenta of the tracks $\overline{\xi}_{+}$

Conclusions

CDF and D0 have both covered many BSM searches using an integrated luminosity of up to 4.1 fb⁻¹

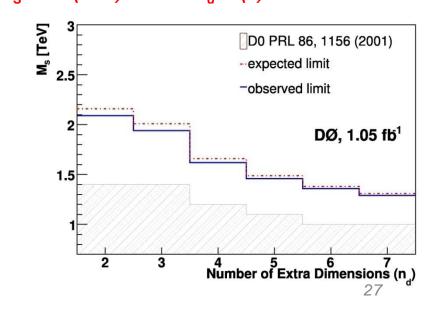

No significant excess of events over SM expectations ! The Standard model is still in good shape.

Both collaborations are now working on the > 6.5 fb⁻¹ data already recorded per experiment .

Tevatron is performing better then ever. We could hope to collect up to 12 fb⁻¹ by 2011....

BACK-UP SLIDES

Search for LED in the ee and $\gamma\gamma$ channel



1 fb⁻¹ PRL 102, 051601 (2009)

2 EM clusters (E_T > 25 GeV) with at least one in the central part of the calorimeter ($|\eta| > 1.1$)

Look for deviations in the di-EM mass and the $|\cos(\theta^*)|$ distributions

95% C.L. limit on the effective Planck scale M_s GRW model (n_d independent) $M_s > 1.62 \text{ TeV}$ HLZ model (n_d dependent) $M_s > 2.09 (1.29) \text{ TeV for } n_d = 2 (7)$

W'-like resonances in the (t b) decay channel

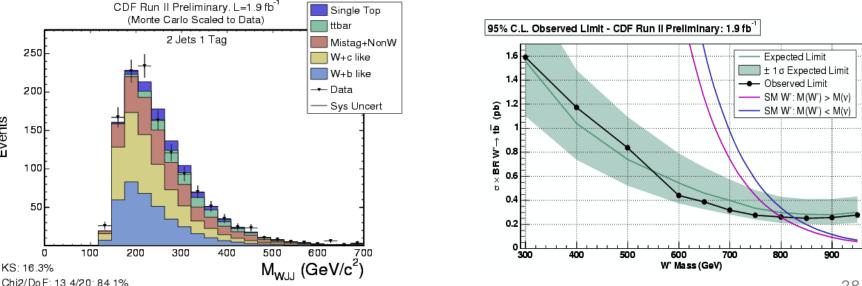
Final state: (l v b) b

- Only one \nvDash (e or μ) (P_T >20 GeV)
- $E_{\tau}^{miss} > 25 \text{ GeV}$

Events

2 or 3 jets E_{τ} >20 GeV at least one * b-tag

 $M_{t,\overline{b}}$ from the 4-momenta of l^{\pm} , v,2jets (constrained by $M_{l_{y}} = M_{W}$ to get p_{yz})


Main BGs: W + jets and top

Extension of the SM model which adds a narrow rigth-handed W' with SM-like couplings

No excess compared to SM expectation:

 $M_{W'} > 825 \text{ GeV}$ (if $M_{W'} < M_{V_R}$) leptonic decay forbidden

 $M_{W'} > 800 \text{ GeV}$ (if $M_{W'} > M_{V_R}$)

