

First HI at LHC: Inclusive production, correlations and heavy flavours

Hadron Collider Physics Symposium Evian, 16-20 November 2009

Luciano Ramello – Università del Piemonte Orientale & I.N.F.N. Alessandria, Italy

Outline

- □ Heavy Ion capabilities of LHC experiments
- Inclusive production
 - Charged particle multiplicity, dN/dη
 - p_T spectra (stable particles, resonances), ratios, ...
- Correlations
 - \triangleright Radial, directed (v_1) and elliptic (v_2) flow
 - > HBT correlations, fluctuations
- □ Heavy flavours
 - Open charm, open beauty

Photons, jets and quarkonia covered in next presentation by Olga Kodolova

ALICE

- Experiment designed for Heavy Ion collisions
 - Only dedicated experiment at LHC, must be comprehensive and be able to cover all relevant observables
 - Very robust tracking
 - high-granularity detectors with many space points per track, very low material budget (~10% $\rm X_0$ for r < 2.5 m and $\rm |\eta|$ <0.9) and moderate magnetic field (0.5 T)
 - PID over a very large p_T range
 - Hadrons (barrel), leptons (barrel + muon spectrometer) and photons
 - Very low p_T cutoff ($\sim 0.1 \text{ GeV/c}$)
 - Excellent vertexing (6 layers of Si) for charm & beauty

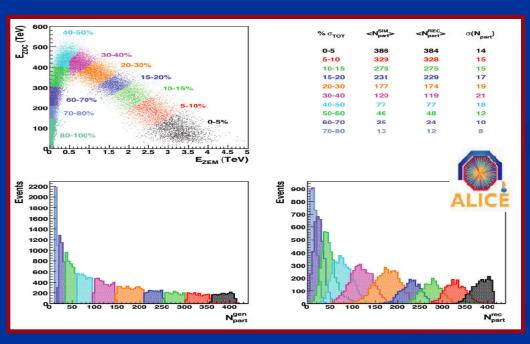
ATLAS

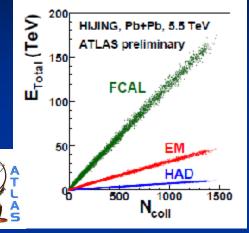
- Primarily designed for p+p interactions
- Excellent capabilities for Pb+Pb interactions:
 - Tracking of charged particles (including muons) in
 -2.5 < η < 2.5 (2 T solenoid): 3 layers of pixels,
 SCT, TRT
 - Total transverse energy
 - > Photons, jets and quark onia

CMS

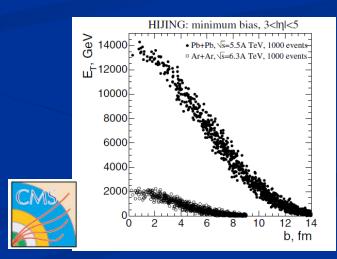
- Primarily designed for p+p interactions
- Excellent capabilities for Pb+Pb interactions:
 - Tracking of charged particles (4 T solenoid) with Inner detector (|η|<2.5): Si pixels (3 layers in barrel, 2 in endcaps) + Si strips
 - Calorimetry: ECAL ($|\eta| < 3$), HCAL ($|\eta| < 3$), HF ($3 < |\eta| < 5$)
 - CASTOR (5< $|\eta|$ < 6.7)
 - $ZDC(|\eta| > 8)$
 - Muons in $|\eta| < 2.4$
 - Photons, jets and quark onia

Inclusive production

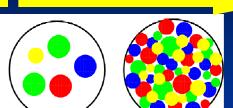

Centrality determination

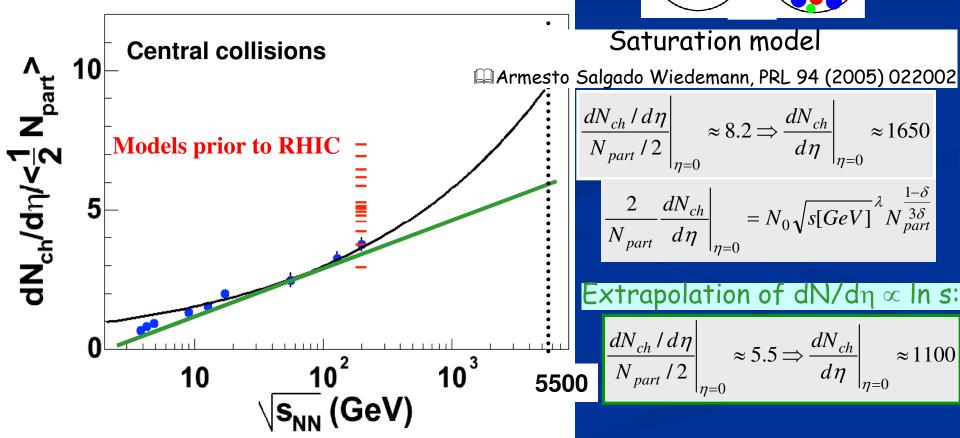

Goal: subdivide events in centrality dasses dosely related to b, Npart, Ncoll

ATLAS: total transverse energy (E_T) + LUCID* + ZDC * LUminosity Cerenkov Integrating Detector


CMS: E_T in forward calorimeters (3< η <6.7) + neutron ZDC

ALICE: zero degree energy $E_{ZDC} + \overline{E}_{ZEM}$

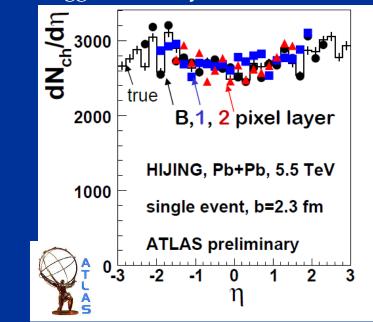

ATL-PHYS-PROC-2009-021

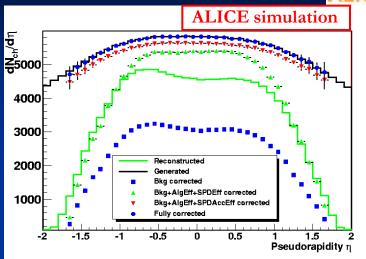

J. Phys. G: Nucl. Part. Phys. 34 (2007) 2307

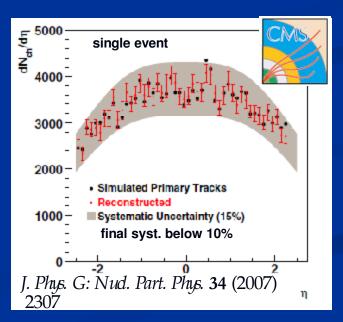
Charged multiplicity at the LHC

- Extrapolation of $dN_{ch}/d\eta_{max}$ vs \sqrt{s} :
 - Fit to $dN/d\eta \propto \ln s$ (limiting fragmentation)...
 - ... or Saturation model (dN/d $\eta \propto \sqrt{s^{\lambda}}$ with λ =0.288)?
 - Clearly distinguishable with the first 10k LHC Pb-Pb event

increasing \sqrt{s} – decreasing x

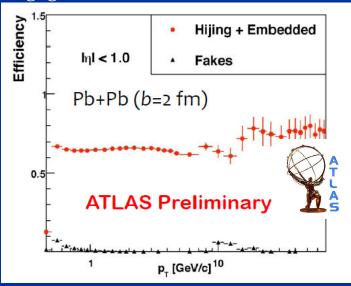

$dN_{ch}/d\eta$


ALICE: tracklets (Si Pixels, layer 1 and 2)
adding Forward Mult. Det.: ~8 units in η
ATLAS: hits in first 3 layers of Si Pixels
CMS: hits in layer 1 of Si Pixels (+ tracklets)

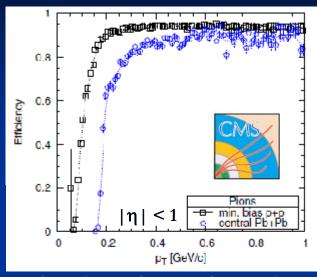

Corrections applied:

- Secondary particles, fakes
- Detector acceptance+efficiency
- Trigger efficiency

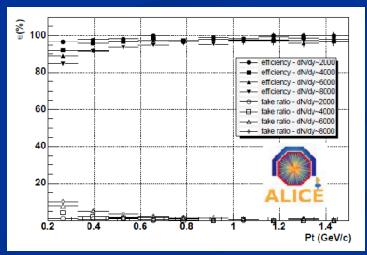
ATL-PHYS-PROC-2009-009



Low p_T tracking


CMS: Si pixels, hit triplet finding algorithm (central Pb-Pb: $p_{T,min}$ set at 175 MeV/c); fake rates below 10% (5%) for $p_T > 0.4$ GeV/c

ATLAS: tracks in the inner detector; negligible fake rate above 1 GeV/c



ATL-PHYS-SLIDE-2009-199

ALICE: algorithmic efficiency for tracks in ITS+TPC; physical efficiency in TPC limited at 90%, can be recovered with ITS standalone tracking

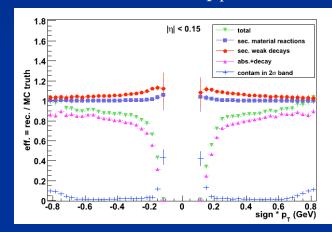
J. Phys. G: Nucl. Part. Phys. 34 (2007) 2307

JINST 3 (2008) S08002

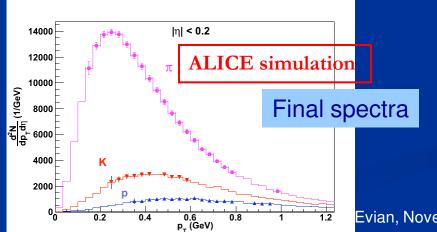
Identified particle spectra

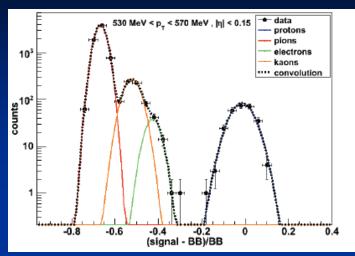
Chemical composition

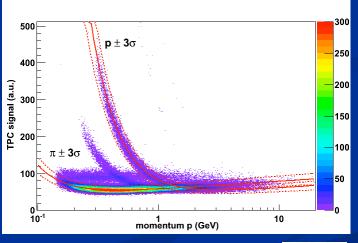
Statistical model prediction: Temperature T_{ch} increases rapidly at low \sqrt{s} , then reaches about 160 MeV at 7-8 GeV and stays constant; chemical potential μ_B decreases continuously with increasing \sqrt{s} (see e.g. A. Andronic et al., arXiv:0711.0974 [hep-ph])


Interest for inclusive particle yields/ratios, acceptance at low p_T is crucial

π, K, p spectra (I)

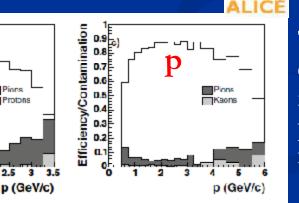

ALICE TPC standalone analysis, 2 PID methods:


A: in each p_T -bin, histogram with measured dE/dx minus expected dE/dx for π 's filled and fitted with a multiple Gauss function;


B: select all particles within a $n\sigma$ -band around each B-B curve, p_T -bins filled directly

Efficiency, contam. vs p_T

ITS dE/dx (4 Si layers) PID also being studied



π, K, p spectra (II)

CMS: PID (π , K, p up to 1 GeV/c, π +K from p up to 2 GeV/c) with dE/dx in the 3 layers of Si pixels

CMS TDR 8.1-Add.1, J. Phys. G. Nucl. Part. Phys. 34 (2007) 2307

ALICE: separation of π , K, p up to ~5 GeV/c using the **TOF** signal (~50% of primary particles reach TOF) combined with TPC momentum and TRD tracking

10⁵
10⁴
10⁴
10⁴
10⁴
10⁴
10²
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
p_T [GeV/c]

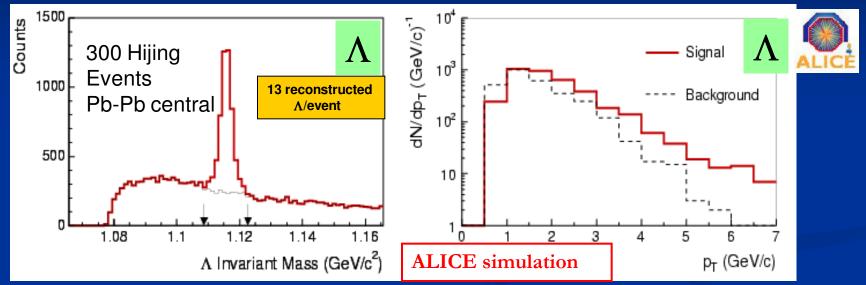
D. d'Enterria QM2008

TOF PID algorithm efficiency & contamination, for primary pions, kaons and protons, in central Pb-Pb collisions.

J. Phys. G. Nucl. Part. Phys. 32 (2006) 1295

p (GeV/c)

0.9 0.8


0.6

0.4

0.2

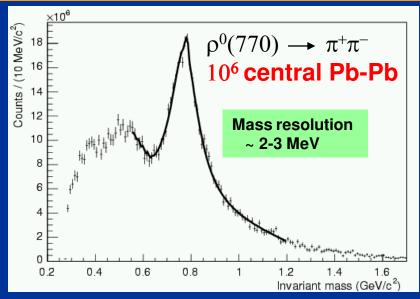
Strange hadrons

ALICE, statistical limit for 1 year: $\sim 10^7$ central Pb-Pb, 10^9 min. bias pp $p_T \sim 13$ - 15 GeV/c for K+, K⁻, K⁰_s, Λ $p_T \sim 9$ - 12 GeV/c for Ξ , Ω

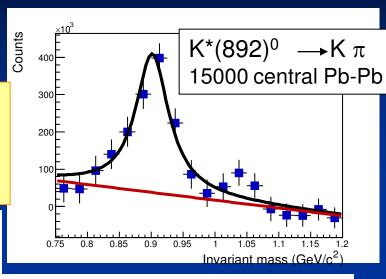
Reconstruction rates:

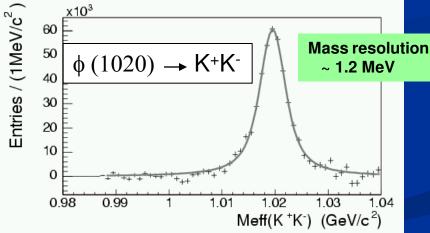
Λ: 13 / event

Ξ: 0.1 / event


 Ω : 0.01 / event

CMS: in low luminosity pp runs, K⁰s and As can be exclusively identified; for Pb-Pb collisions the inclusive yield can still be extracted with a reasonable background.


Resonances


Partial chiral symmetry restoration & interaction of resonances and/or their daughters with medium can modify properties: peak pos. & width

Resonance	Life-time [fm/c]	Resonance	Life-time [fm/c]
ρ(770)	1.3	$\Sigma^*(1385)$	5.7
$\Delta^{++}(1232)$	1.7	Λ*(1520)	13
$f_0(980)$	2.6	$\omega(783)$	23
K*(892)	4.0	φ(1020)	45

J. Phys. G. Nucl. Part. Phys. 32 (2006) 1295

Invariant mass reconstruction, background subtracted (like-sign method) mass resolutions ~ 1.5 - 3 MeV/c² and p_T stat. limits from 8 (ρ) to 15 GeV/c (ϕ , K*)

Correlations

Anisotropic flow

Azimuthal asymmetry in coordinate space (transverse plane):

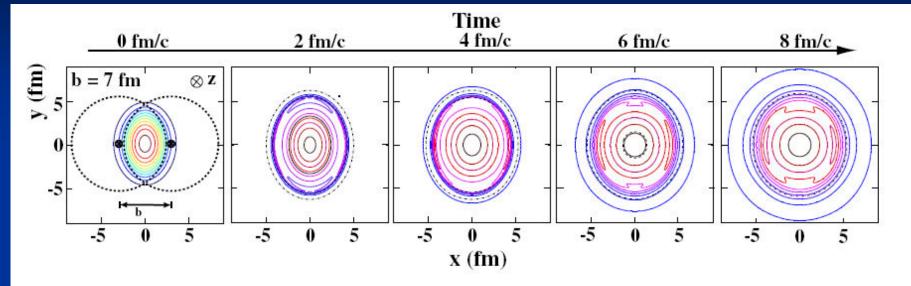
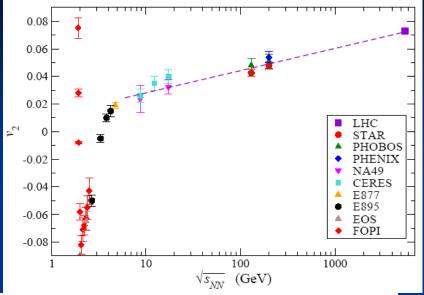
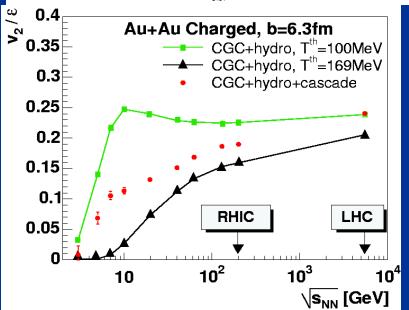


FIG. 10: The created initial transverse energy density profile [44] and its time dependence in coordinate space for a non-central heavy-ion collision. The z-axis is along the colliding beams, the x-axis is defined by the impact parameter b (the vector connecting the centers of the colliding heavy-ions, perpendicular on the beam axis).

Kolb + Heinz

produces azimuthal asymmetry in momentum space:


$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{t}}\mathrm{d}p_{\mathrm{t}}\mathrm{d}y} \left[1 + \sum_{n=1}^{\infty} 2v_{n}\mathrm{cos}(n\phi)\right]$$


The amount of observed flow depends on **centrality** and on the **spatial eccentricity** ε:

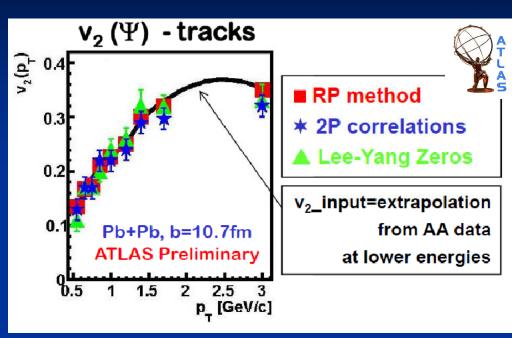
$$\varepsilon = \frac{\left\langle y^2 - x^2 \right\rangle}{\left\langle y^2 + x^2 \right\rangle}$$

 v_1 = directed flow v_2 = elliptic flow

Elliptic flow: expectations at LHC

Elliptic flow is one of the KEY observables for collective effects also at LHC. From the observed v_2 dependence on \sqrt{s}

one expects p_T -integrated $v_2(0) \sim 0.08$ @ LHC

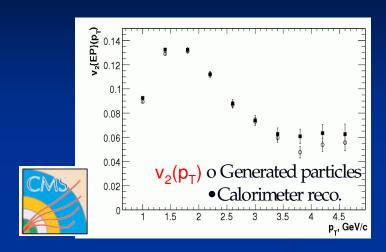

Large signal → easy measurement, but.. beware of non-flow contributions (jets...)!

More insight from p_T dependence and PID

 v_2 (elliptic flow) is supposed to **scale** as **eccentricity &** (different definitions proposed); from hydrodynamics calculations, it appears that the contribution to v_2/ϵ by the QGP phase (rather than from the cascade) is much larger at LHC with respect to lower energies

T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, QM 2008

Elliptic flow (I)



ATL-PHYS-SLIDE-2009-199

ATLAS elliptic flow measured from:

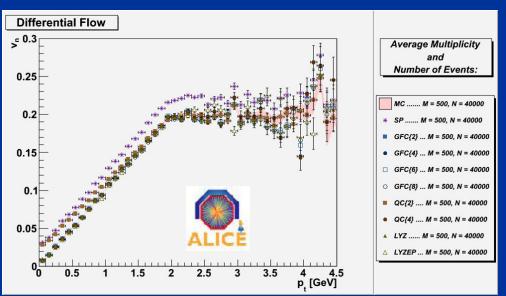
- 1) tracks,
- 2) hits from inner tracking,
- 3) energy in first layer of calorimeters.

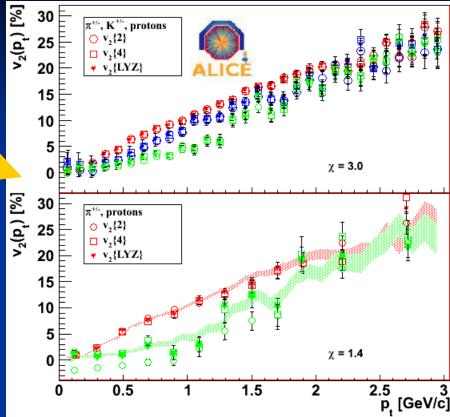
Methods used for v_2 extraction: Reaction Plane (RP), 2-particle correlations, Lee-Yang Zeros

D. d'Enterria QM2008 Hydro model for flow

CMS event plane from:

- 1) ECAL + HCAL (barrel+endcaps),
- 2) inner tracker.


Methods used for v_2 extraction: Event Plane (EP), 2-particle correl., Cumulants

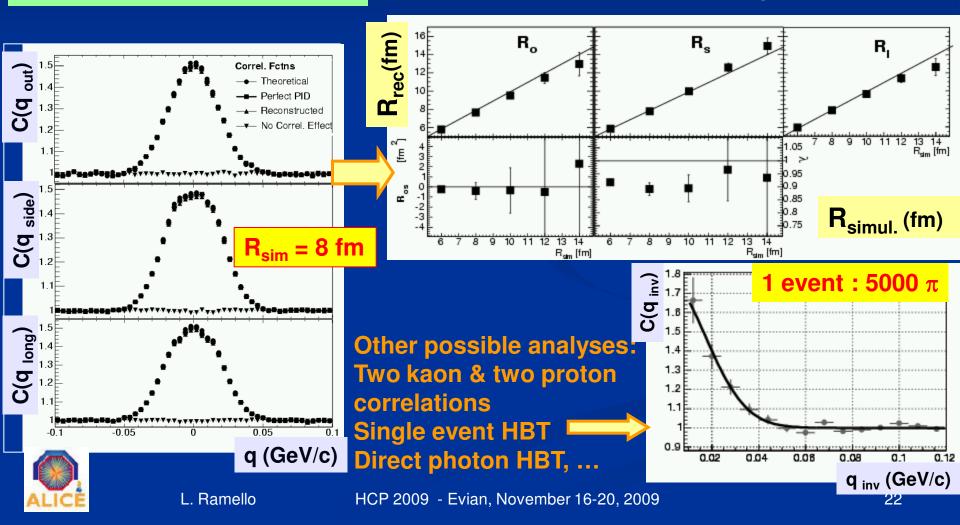

CMS TDR 8.1-Add.1, J. Phys. G. Nucl. Part. Phys. 34 (2007) 2307

Elliptic flow (II)

For large values of multiplicity M (upper plot) both two-particle and multi-particle methods give correct estimate of flow, while for smaller values of multiplicity (lower plot) only multi-particle methods (v2{4}, v2{LYZ}) correctly estimate flow.

2-particle correlations methods biased by large non-flow correlations (jets, resonances, HBT)

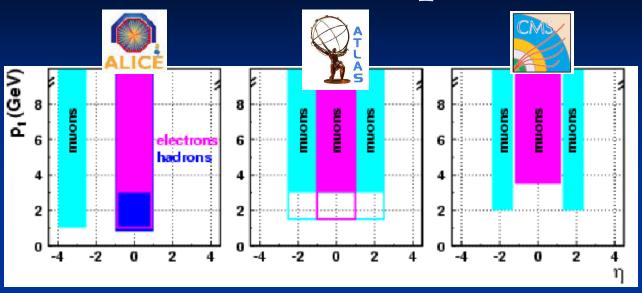
Flow analysis on 500 Pb+Pb hydro + Therminator events, a model based on hydrodynamics and single freeze-out statistical hadronisation including a complete treatment of resonances


40k events, integrated v_2 = 0.087, M = 500, with nonflow METHODS: SP = Scalar Product; GFC, QC = Cumulants; LYZ = Lee-Yang Zeroes

HBT with identical pions

Study of event mixing, two track resolutions, track splitting/merging, pair purity, Coulomb interactions, momentum resolution corrections, PID corrections

Correlation functions (Pb+Pb)


Radii can be recontructed up to 15-20 fm

Heavy flavours

Open Heavy Flavour measurements will provide a natural reference for Quarkonia (see following talk by O. Kodolova)

HF at LHC: acceptances

- Complementarity between experiments:
 - ALICE: low p_T reach; hadrons (unique measurement, at low and high p_T), electrons (barrel tracker, Si vertexer) and muons (forward spectrometer, no vertexer)
 - ATLAS and CMS: high p_T reach (higher luminosity); muons in wide η acceptance; b-tagged jets

HF at LHC: channels studied

Beauty:

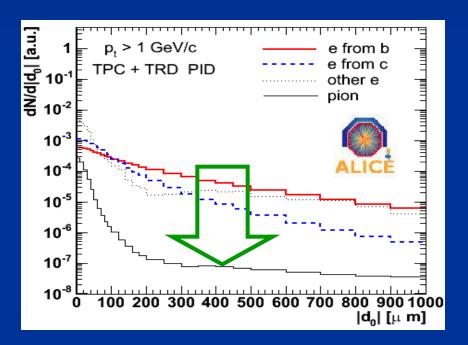
- $B \rightarrow e + X$
- $B \rightarrow \mu + X$
- $B \to J/\psi + X \to 1^+1^- + X$
- B \rightarrow >5 prongs
- (B)B $\rightarrow \mu\mu + X$
- b-tagged jets

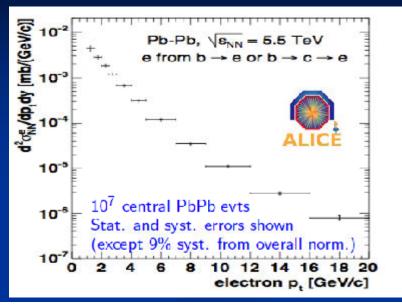
Charm:

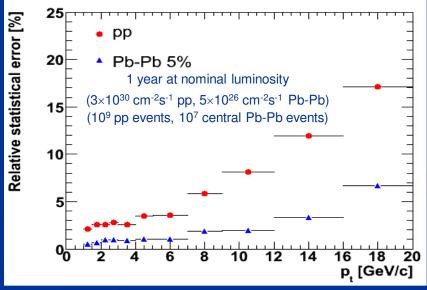
- $D^0 \rightarrow K^-\pi^+$
- $D^+ \rightarrow K^-\pi^+\pi^+$
- $D^+_s \rightarrow \overline{K^-K^+\pi^+}$
- $D^* \rightarrow D^0 \pi$
- $D^0 \rightarrow K\pi\pi\pi$
- $\Lambda^+_c \to pK^+\pi^+$

Techniques: tracking, vertexing, e/π ID, μ ID, calorimetry

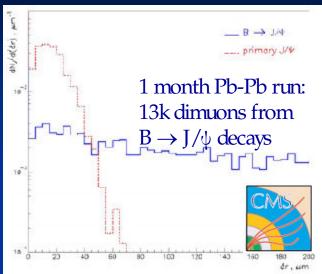
Physics addressed:

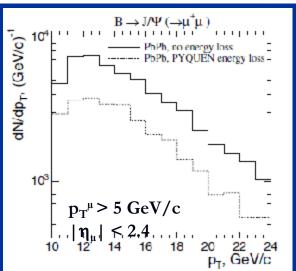

- heavy quark energy loss (R_{AA}, R_{D/h}, R_{B/h})
- charm quark flow (v₂ vs. pt)

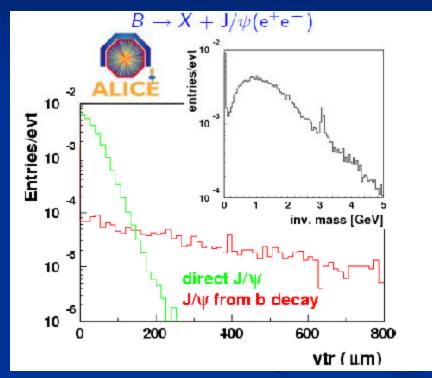

$B \rightarrow e + X$


Electron PID: remove most hadrons

 d_0 >200 μm: reduce charm and background electrons (γ conv., Dalitz)

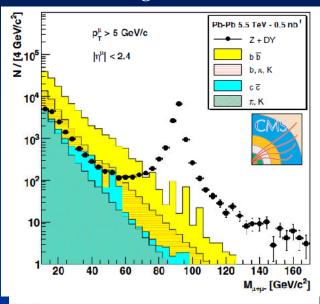

 d_0 < 600 μm : reduce e's from strange particles

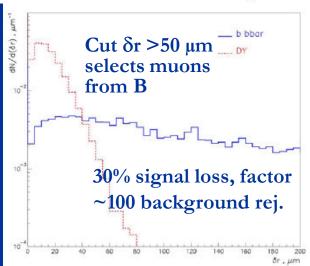


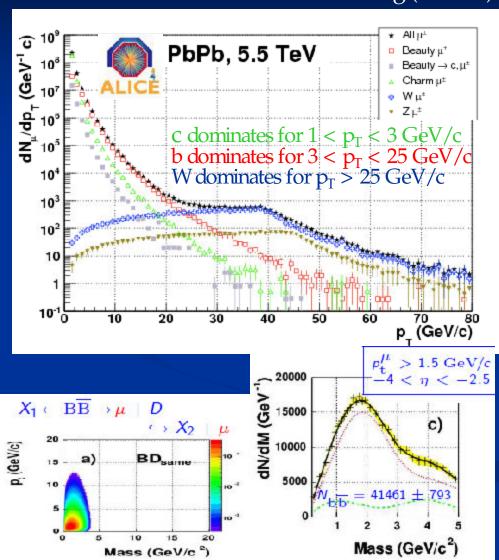


$\overline{\mathbf{B} \to \mathbf{J/\psi} + \mathbf{X} \to \mathbf{1^+1^-} + \mathbf{X}}$

vtr: distance primary-secondary vertex in ⊥ plane

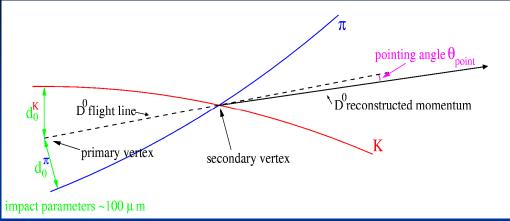

This channel will enable testing of b-quark energy loss, via yield reduction & η distribution narrowing

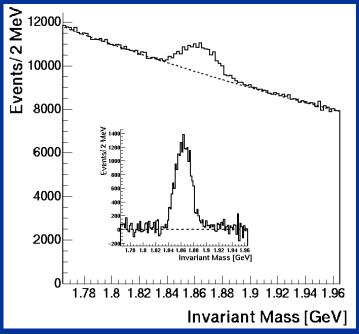

Minimum lepton p_T : ALICE (e) ~1 GeV/c, CMS (μ) ~5 GeV/c

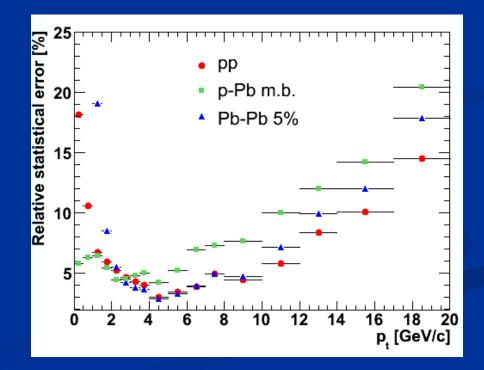

(B)B $\rightarrow \mu\mu + X$

With vertexing (CMS):

Without vertexing (ALICE):




$D^0 \rightarrow K^-\pi^+$



B.R. = 3.8% ct = $123 \, \mu m$ main selection: displaced vertex $\cos(\theta_{point})$ and $d_0^{\pi} \cdot d_0^{K}$ cuts reduce combinatorial background by ~ 1000

pp, Pb-Pb: 1 year at nominal luminosity (10⁹ pp events, 10⁷ central Pb-Pb events) p-Pb: 1 month (10⁸ events)

ALICE Collaboration, J. Phys. G 32 (2006) 1295; A. Dainese, QM 2009

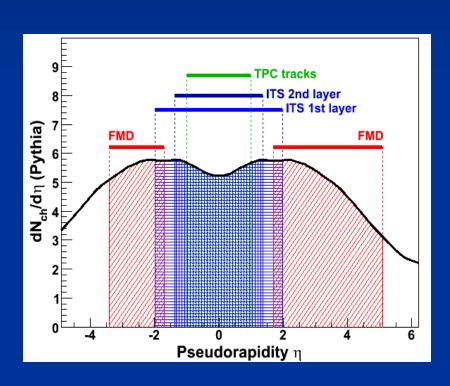
Conclusions

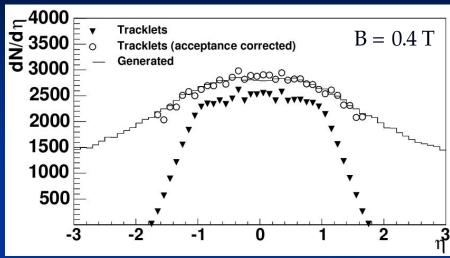
- Rich physics programme developed by ALICE, ATLAS and CMS for the first LHC Pb-Pb run (scheduled at end of the 2009-10 pp run) - analysis procedures well established and tested on the GRID
- Detectors already commissioned with cosmic muons, will be fully calibrated after the first pp run
- Bulk properties and correlations: current picture based on RHIC (gluon saturation, statistical hadronization, quark coalescence, ...) will be tested at LHC energy
- Heavy flavours: copious beauty (and charm) production, many techniques for HF tagging developed: energy loss of heavy quarks will be studied in detail
- A wealth of physics results from the first month of Pb+Pb collisions is eagerly expected!

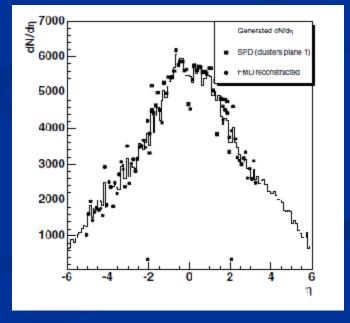
ALICE References

- ALICE Physics Performance Report:
 - Volume 1: F. Carminati et al., J. Phys. G. Nucl. Part. Phys. 30 (2004) 1517
 - Volume 2: B. Alessandro et al., J. Phys. G. Nucl. Part. Phys. 32 (2006) 1295
- ALICE Detector technical paper:
 - K. Aamodt et al., The ALICE Experiment at the CERN LHC, 2008 JINST 3 S08002.

ATLAS References

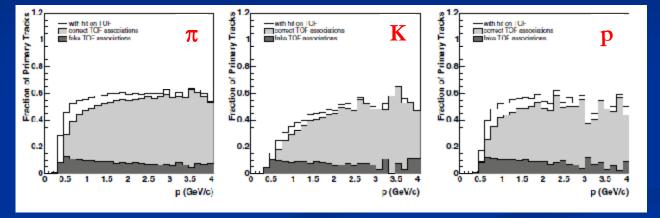

- N. Grau, <u>Heavy-ion physics prospects with the ATLAS detector</u> at the LHC (QM 2008), J. Phys. G: Nucl. Part. Phys. 35 (2008) 104040
- P. Steinberg, <u>Global observables in heavy-ion collisions at the LHC with the ATLAS detector</u> (QM 2008), J. Phys. G: Nucl. Part. Phys. 35 (2008) 104151
- A. Trzupek, "Global Observables for Pb+Pb Collisions from the <u>ATLAS Experiment</u>", ATL-PHYS-PROC-2009-021, Proceedings of PANIC08, 9-14 November 2008, Eilat ISRAEL
- J. Dolejsi, Status of ATLAS and preparation for the Pb+Pb run, (QM 2009) ATL-PHYS-SLIDE-2009-058
- A. Trzupek, "Heavy Ion Physics with the ATLAS Detector at the LHC", ATL-PHYS-PROC-2009-090, Proceedings of HEP 2009, Kraków, Poland, 16-22 July 2009

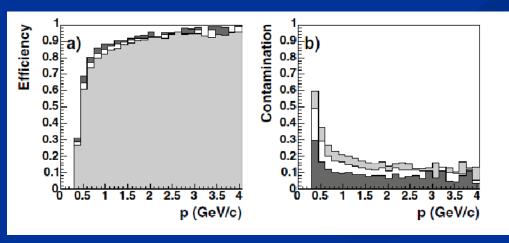

CMS References


- CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions, The CMS Collaboration et al 2007 J. Phys. G: Nucl. Part. Phys. 34 2307-2455
- Charged hadron spectra with pixel "tracklets" (CMS_PAS-QCD-09-002)
- Charged hadron spectra with full tracking (CMS_PAS-QCD-07-001)

BACKUP

dNch/dη in ALICE

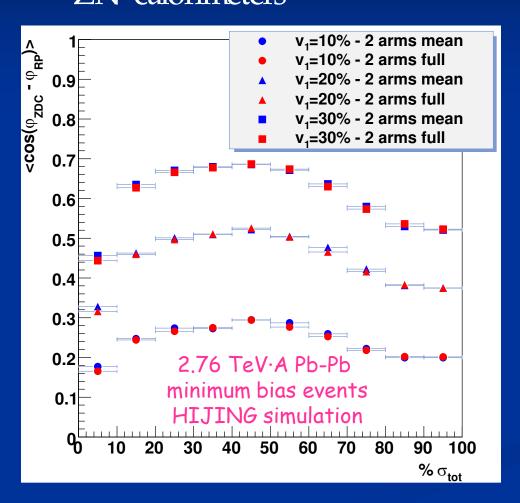

ALICE TOF: performance in Pb-Pb

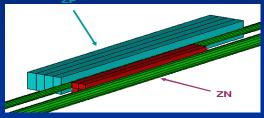

TPC outer radius 2.6 m, TOF inner radius 3.7 m.

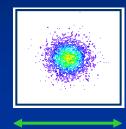
At $p_T = 2.5$ GeV/c, about 50% of primary particles do NOT hit TOF, due to

TOF dead spaces (~15%), decays (K), interaction in TRD material (0.18

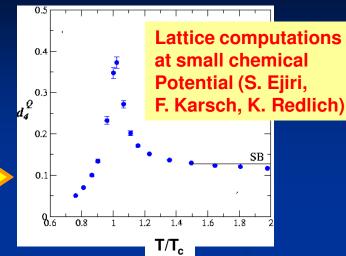
absorption lengths).




Track-TOF signal matching for $dN_{ch}/d\eta = 2000$, 5000 and 8000: algorithm efficiency and contamination


Directed flow

v₁ can be measured in ALICE via spectator neutrons (η>8.7),
namely by their centroids as obtained by the two zero-degree
'ZN' calorimeters


7.04 cm

- For a range of plausible v₁ values (10% 20% 30%) at LHC, the first order event plane resolution obtained by combining both ZN's is quite adequate
- In addition, this measurement provides the sign of v₂

Event-by-event fluctuations

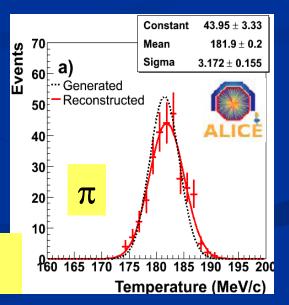
Fluctuations of temperature, entropy, energy density and of quark number susceptibilities (net charge, isospin, strangeness content) associated with phase transition

Example: 4th moment of the net charge

High multiplicities at LHC => ALICE suited for the measurement of event/event fluctuations of $< p_T >$, T multiplicity, particle ratio, strangeness, azimuthal anisotropy, intermediate / high p_T phenomena, long range correlations, balance function, ...

Mini-jets and jets expected to increase strongly the level of fluctuations

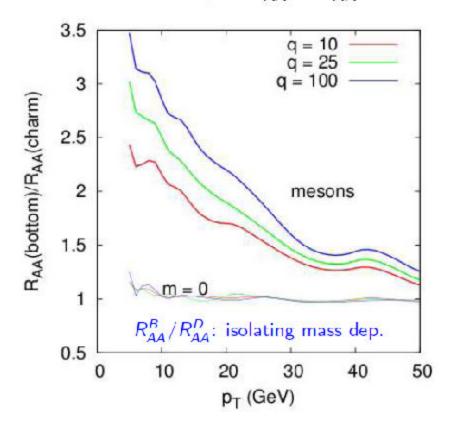
Fluctuations of flow → viscosity

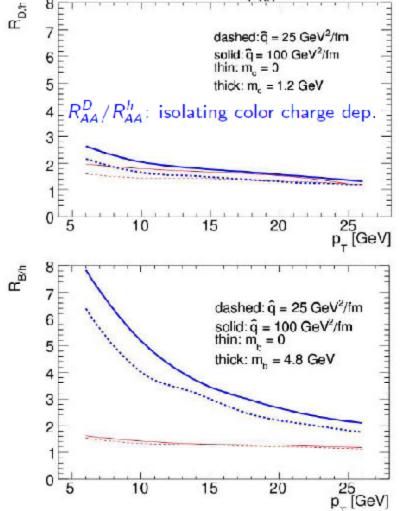

Fluct. of particle ratios → constraints

on statistical models

Resolution of the particle ratios → constraints

O.5 % from the particle ratios of the particle ratios → constraints of the particle ratios of the particle ratios → constraints of the particle ratios of the particle ratios of the particle ratios → constraints of the particle rati

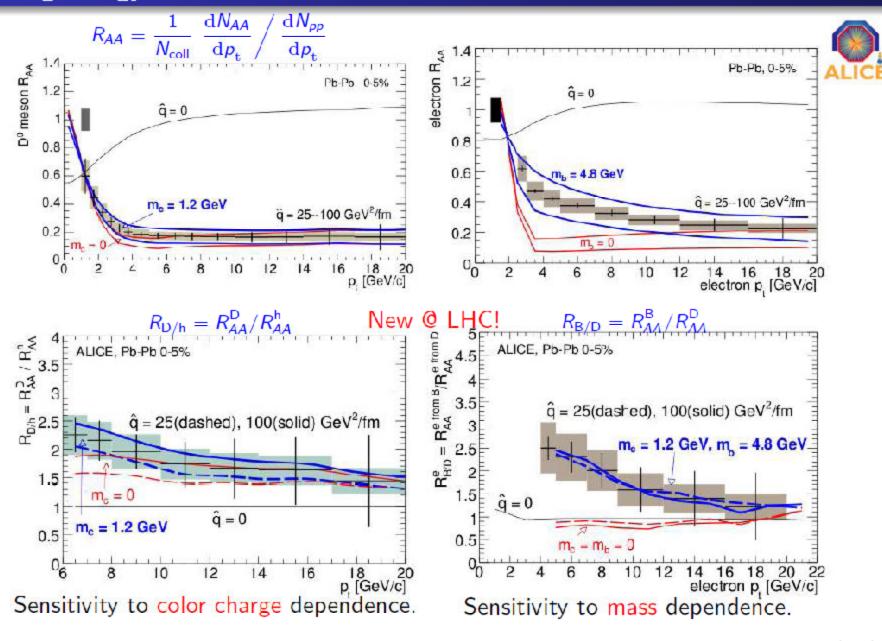

Resolution σ_T/T : 0.5 % for π



Heavy flavor issues

- Significant non-photonic electron suppression at high-p_t measured
 @ RHIC: heavy flavor energy loss.
- New energy loss aspects can be tested
 © LHC:
 - Color charge dependence. $\Delta E_{\rm g} > \Delta E_{\rm q} \Rightarrow R_{AA}^h < R_{AA}^D$ (@ high- $p_{\rm t}$)

• Mass dependence. $\Delta E_q > \Delta E_Q \Rightarrow R_{AA}^D < R_{AA}^B \ (@ high-p_t)$



LHC, Pb-Pb 0-10%, $\sqrt{S_{NN}} = 5.5 \text{ TeV}$

A.Dainese, Eur.Phys.J.C 49 (2007) 135
N.Armesto et al., J.Phys.G 35 (2008) 054001

Testing energy loss

b-jet tagging (Pb+Pb)

- ATLAS: b, c jet tagging with muon ($p_T > 5 \text{ GeV/c}$) efficiency for b up to 80%, purity: b+c 70%, b 40%
 - N. Grau et al., ATL-PHYS-SLIDE-2009-063 (QM 2009), arXiv:0907.4944 [nucl-ex]
- CMS: jet ($|\eta| < 3.0$, $E_T > 50$ GeV) with leading μ ($|\eta| < 2.4$, $p_T > 5$ GeV/c): 20k b-tagged jets in 1 month of Pb+Pb run I.P. Lokhtin et al., *Eur. Phys. J.* C 37 (2004) 465–9 (*Preprint* hep-ph/0407109)
- ALICE: under study