

Bunch shape with electro optic techniquemeasurements on the limits

Andrii Borysenko, Nicole Hiller, Michael J. Nasse, Marcel Schuh and Anke-Susanne Müller.

Karlsruhe Institute of Technology

Institute for Photon Science and Synchrotron Radiation

Outline

FLUTE

- What is FLUTE machine and motivation
- What to use for bunch length measurement?
- Principles of electro-optical bunch length measurements
- Simulations of a bunch length monitor
- Measurements at SwissFEL ITF
- Summary & outlook

Location

KIT Campus North, Karlsruhe, Germany

- <u>Ferninfrarot Linac- Und Test Experiment</u>
- FLUTE accelerator test facility at KIT

- <u>Ferninfrarot Linac- Und Test Experiment</u>
- FLUTE accelerator test facility at KIT
 - Bunch compression studies for different compression schemes
 - Wide range of bunch charges and lengths
 - Different coherent THz radiation generation schemes

- <u>Ferninfrarot Linac- Und Test Experiment</u>
- FLUTE accelerator test facility at KIT
 - Bunch compression studies for different compression schemes
 - Wide range of bunch charges and lengths
 - Different coherent THz radiation generation schemes

High dynamic range/adaptive

Non-destructive

<u>Ferninfrarot Linac- Und Test Experiment</u> FLUTE – accelerator test facility at KIT Bunch compression studies for different Bunch length monitor compression schemes High dynamic range/adaptive Wide range of bunch charges and lengths Different coherent THz radiation Non-destructive generation schemes EO-based bunch length monitor Bunch Photoinjector e-gun Linac THz compressor Quadrupoles generation

FLUTE key parameters

Final electron energy	42	MeV
Electron bunch charge	1 - 3000	рС
Electron bunch length	1- 300	fs
Pulse repetition rate	10	Hz
Length	~15	m

Locations of interest for longitudinal diagnostics

Principles of Electro-Optical Spectral Decoding

Laser System

Yb-doped fiber laser 1030 nm*

EO system installed at ANKA

* Courtesy of Peter Peier, Desy

Single-shot method

Simulation

Tool: MATLAB based code – developed by B. Steffen (DESY)

Main Input parameters:

	Electron Bunch	Lase	Crystal & Detection
		σ_{λ} - spectral width	Material (GaP)
Fixed	γ – energy (7, 42 MeV)	λ – wavelength (1030 nm – Yb-doped)	Wave-plate settings
Varied	Q – charge		Distance to e-beam
	σ_z – length	σ_{T} – pulse length	Thickness of a crystal
	Aim: Determine	optimal settings for bunc	h-length monitor

Locations of interest for longitudinal diagnostics

Simulation Results

Simulation Results

Simulation Results

EOSD signal – after Gun (7 MeV)

21 5th LA³NET Topical Workshop, March 23, 2015, Mallorca, Spain

Electro-Optical bunch length measurements

Andrii.Borysenko@kit.edu

EOSD signal – after Gun (7 MeV)

EOSD signal – after Gun (7 MeV)

EOSD signal – after linac (42 MeV)

EOSD signal – after chicane (42 MeV)

Simulation Summary

Position 1: After Gun Challenge – Iow γ Limits – Low charge density

Position 2: After linac Measurement conditions reliable

Position 3: After chicane Crystal thickness become more important Laser pulse length plays stronger role Too strong signal

Conclusion:

- Thick crystal
- Bring it close
- Even 1 pC measurable
- Thinner crystal

Measurements at Swiss FEL TIF

* Courtesy of Yevgeniy Ivanisenko, PSI

Measurements at low energies

Recent development

Laser assembly at DESY

Acknowledgements

Thanks to our colleagues:

DESY: Peter Peier, Bernd Steffen.

PSI: Rasmus Ischebeck, Yevgeniy Ivanisenko

KIT: ANAK THz Group, Nicole Hiller

Thank you for your attention!

