

## Program, technologies and opportunities

#### Isabel Bejar Alonso HL-LHC Technical coordinator



The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.



## Goal of High Luminosity LHC (HL-LHC)

- The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:
- Prepare machine for operation beyond 2025 and up to 2035
- Devise beam parameters and operation scenarios for:
  - # enabling a total integrated luminosity of **3000 fb**<sup>-1</sup>



#### **HL-LHC Baseline Parameters**

|                                                                                      | N         | Iominal LHC          | HL-LHC 25ns              | HL-LHC 25 ns | HL-LHC 50ns |   |
|--------------------------------------------------------------------------------------|-----------|----------------------|--------------------------|--------------|-------------|---|
| Parameter f m N                                                                      | 2         | esign report)        | (standard)               | (BCMS)       | _           |   |
| Beam energy in collision [IeV]                                                       | ס '       | /                    | 1                        | /            | /           |   |
| $L = \gamma - \Lambda \pi c \beta^*$                                                 | $-\kappa$ | 1.15E+11             | 2.2E+11                  | 2.2E11       | 3.5E+11     |   |
| $n_b$                                                                                |           | 2808                 | <b>2748</b> <sup>1</sup> | 2604         | 1404        |   |
| Number of collisions at IP1 and IP5                                                  |           | 2808                 | 2736                     | 2592         | 1404        |   |
| N <sub>tot</sub>                                                                     |           | 3.2E+14              | 6.0E+14                  | 5.7E+14      | 4.9E+14     |   |
| beam current [A] Impedance, efficiency                                               | etc.      | 0.58                 | 1.09                     | 1.03         | 0.89        |   |
| x-ing angle [µrad]                                                                   |           | 285                  | 590                      | 590          | 590         |   |
| beam separation [σ]                                                                  |           | 9.4                  | 12.5                     | 12.5         | 11.4        |   |
| β <sup>*</sup> [m] ATS required                                                      |           | 0.55                 | 0.15                     | 0.15         | 0.15        | Ļ |
| ε <sub>n</sub> [μm]                                                                  |           | 3.75                 | 2.50                     | 2.50         | 3           |   |
| ε <sub>L</sub> [eVs]                                                                 |           | 2.50                 | 2.50                     | 2.50         | 2.50        |   |
| r.m.s. energy spread                                                                 |           | 1.13E-04             | 1.13E-04                 | 1.13E-04     | 1.13E-04    |   |
| r.m.s. bunch length [m]                                                              |           | 7.55E-02             | 7.55E-02                 | 7.55E-02     | 7.55E-02    |   |
| IBS horizontal [h]                                                                   |           | 80 -> 106            | 18.5                     | 18.5         | 17.2        |   |
| IBS longitudinal [h]                                                                 |           | 61 -> 60             | 20.4                     | 20.4         | 16.1        |   |
| Piwinski angle                                                                       |           | 0.65                 | 3.14                     | 3.14         | 2.87        |   |
| Geometric loss factor R0 without crab-cavi Crab Cavity r                             | eaui      | red <sup>0.836</sup> | 0.305                    | 0.305        | 0.331       |   |
| Geometric loss factor R1 with crab-cavity                                            | Cyun      | ,0.981)              | 0.829                    | 0.829        | 0.838       |   |
| beam-beam / IP without Crab Cavity                                                   |           | 3.1E-03              | 3.3E-03                  | 3.3E-03      | 4.7E-03     |   |
| beam-beam / IP with Crab cavity                                                      |           | 3.8E-03              | 1.1E-02                  | 1.1E-02      | 1.4E-02     |   |
| Peak Luminosity without crab-cavity [cm <sup>-2</sup> s <sup>-1</sup> ]              |           | 1.00E+34             | 7.18E+34                 | 6.80E+34     | 8.44E+34    |   |
| Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm <sup>-2</sup> s <sup>-1</sup> ] |           | (1.18E+34)           | 19.54E+34                | 18.52E+34    | 21.38E+34   |   |
| Events / crossing without levelling w/o crab-cavity                                  |           | 27                   | 198                      | 198          | 454         |   |
| Levelled Luminosity [cm <sup>-2</sup> s <sup>-1</sup> ]                              |           |                      | 5.00E+34                 | 5.00E34      | 2.50E+34    |   |
| Events / crossing (with levelling and crab-cavities for HL Leve                      | ling r    | required             | 138                      | 146          | 135         |   |
| Peak line density                                                                    |           |                      | 1.25                     | 1.31         | 1.20        |   |
| Levelling time [h Efficiency requires long fill tim                                  | es (c     | a. 10h)!             | 8.3                      | 7.6          | 18.0        | - |

HL-LHC Plan

LHC

#### LHC / HL-LHC Plan





## Work programme



## HL-LHC Project will need (2014 – 2023)

- Magnets
- RF Cavities
- Collimators
- Cold Powering (HTS superconducting links, power converters)
- Machine Protection & Magnet QPS
- Collider-Experiment Interface
- Cryogenics
- Energy Deposition & Absorber
- 11-T Magnet
- Vacuum
- Beam Diagnostics
- Radiation resistant solid state switches for kicker magnets
- Integration and (de-)installation
- Hardware commissioning
- Infrastructure, Logistic and Civil Engineering





#### **HL-LHC Work Packages**



Performance improvement, increase availability, radiation damage mitigation, ALARA ....

#### High Luminosity LHC Participants today



High Luminosity LHC

#### WP3 – IR Magnets - Why



Radiation damage regime of

Nested corrector magnets 300 fb<sup>-1</sup>

IT quadrupoles 700 fb<sup>-1</sup>

Replacement coupled with:

- Increase quadrupole aperture

- Redesign of quadrupoles, corrector package, D1 and D2

- New electrical feedbox to remove senstive equipment from the tunnel and reduce the amount of human interventions near the triplet



More tan 20 different types of magnets

#### WP11 – 11 Magnets DS - Why





## Magnet technology jump

- LHC is already very pushed
- Passing from 8 T to 11 T in 2018 in LHC dipoles (cryocollimators)
- Passing to 12-13 T in IR Triplet: Ø140 mm!!



## Technology for new magnets: precision machines, with movements, automatized,



#### 3 Rotating winding machine for coil up to 3 meters of length



## **Coil Curing**

Sc coil with specially machiend insulators (5-axis machine) Accuracy of the winding: 20 μm!









2 curing presses : tooling precise at 20  $\mu m$  and 200 °C.

#### Magnet Assembly



2 collaring presses. Precision mechanics under large forces with high pressure precisom hydraulics, precision sensor, automatization



#### New technology Nb<sub>3</sub>Sn 11T Dipole: soon under construction also at CERN

Single aperture model



Twin aperture model





Automatized precision tooling with advanced sensoring

#### **‡** Fermilab







# Polymers laboratories activity for which we may have industrial partnership

#### **Electrostatic paint**

The epoxy paint have an insulation and radiation protection of 30KV for 0.5mm thickness



## Polymers laboratories activity 3D printer

Head pacer for new prototype made with the 3D printer are impregnated with the cyanate ester resin and reinforced with glass fiber to obtain the desired mechanicals properties due to the thin wall thickness







# Needed for cryogenic devices in special insulation materials (accuracy 0.1 mm)

Several different pieces made on the 3 D printer and impregnated were used to check the design. **3D printer** 









#### IR1-IR5 Between D2 and Q4 and Surface



C4.R5







## Development of Crab Cavity prototypes

#### RF-Dipole Nb prototype [ODU-SLAC]





High Luminosity 4-rod in SM18 for RF measurements [Lancaster UK]





#### Concept of RF Power system



## Technology for SC RF cavities





#### End plates stamped out of sheet metal



Cu to Nb



Beam pipe and other ports pulled out (ball rolling) Welding of brazed beam pipes onto end-plates

Brazed stainless steel conflat flanges







Electron-beam welding of body and end plates

#### **Electronics and Power supplies**

#### RF POWER

50 kW/cavity, moderate power Simplified (modified) LHC coupler Redesign of the vacuum-air ceramic (?)

#### **RF** Power

Three choices (Tetrodes, IOTs, SSA) Not a big challenge, but opportunity to use new tec

Tetrode (SPS) 400 MHz, ~50kW





#### Courtesy E. Montesinos







#### WP5 – Collimation- Why



Replacement in other regions must be assessed during Run 2







## Low impedence collimators(LS2 & LS3)



## WP6 – Cold powering - Why



Move power converters and DFBs to radiation free zones to reduce/eliminate dose to personnel and to equipment

High Luminosity LHC

Under study need to remove powering of the arc magnets in IR1-IR5 Possibility of moving power converters in P1 and P5 to parallel tunnel radiation free

# Flexible cryostats and many croygenic equipment, controls, valves, etc...



Supraleitendes LTS-Kabel für die Fusionsforschung in Japan (NIFS) Superconducting LTS cable for Fusion Science in Japan (NIFS)



Photo courtesy of Southwire





### WP7 – Machine protection- Why



Redundancy, flexibility, ... of obsolescent QPS and other machine protection systems

Adapt to fast events such as crab cavities failures or UFOs

Protection of new components

Partly required also without upgrade



### HL-LHC Challenge: Machine Efficiency



## WP8 – Collider experiment interface - Why





TAXS

## Absorbers





## WP 9 – Cryogenics - Why

Increase flexibility and availability

Separation cryogenics RF and magnets in P4

Separation cryogenics from Q1 to Q6 from the arcs and consequently feeding new components

> Under study create redundancy with experiments cryogenics



#### Cryogenics P4- P1 – P5

Pt 5



#### WP 12 – Vacuum - Why





#### Vacuum











## WP 13 – Beam instrumentation- Why



#### Beam instrumentation





## WP 14 – Beam transfer & kickers - Why

🔨 TCDS

TDIS

uminosity

TCLIA, TCLIB

Protect from increased energy deposition in case of impact and of increased radiation background

#### Beam transfer & kickers







## Working on the different scenarios LS2



#### Working on the different scenarios LS2







The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.



#### LHC roadmap: schedule beyond LS1

- LS2 starting in 2018 (July)
- LS3 LHC: starting in 2023 Injectors: in 2024

(Extended) Year End Technical Stop: (E)YETS

- => 18 months + 3 months BC
- => 30 months + 3 months BC
- => 13 months + 3 months BC





#### Other components - Why



Requested by ATS optics



## Options



#### WP4 – Crab cavities and RF - Options

A higher harmonic (800 MHz) either for changing the bunch profile or the synchrotron frequency distribution to improve beam stability

A sub-harmonic (200 MHz)

system can either replace the existing main RF system or work with the 400 MHz RF system which in this case will act as the 2<sup>nd</sup> harmonic to increase bunch stability

#### When:



To reduce the beam induced heating, effect of intra-beam scattering, improve longitudinal beam stability and in some scenarios to increase or level luminosity

#### WP5 – Collimation - Options

Cristal collimation: reduced impact of single diffractive losses compared to the present primary collimators Hollow e-lens: control the diffusion speed of the main beam halo **Collimation upgrade**: can be part of the consolidation or HL-LHC depending on the machine behaviour

#### When:



If required to reduce further impedance by reducing the number of secondary collimators. If required to improve the betatron cleaning of ion beams
Fast failure scenarios of the crab cavities

#### WP 13 – Beam instrumentation- Options





**BBLR:** corrects non-linear effects of long range interactions

#### WP 14 – Beam transfer & kickers - Options



When: In case present system is not compatible with HL-LHC beam

