

New results on Top Mass in CMS

Martijn Mulders (CERN) for CMS

TOPLHCWG open meeting, January 13, 2015

CMS Top Mass results in 2014 (standard methods)

8 TeV:
Preliminary results in all
channels and 7+8 TeV
combination

CMS combination, Sep. 2014 • 172.38±0.10±0.65 GeV

CMS Top Mass combination

TOP-14-015

- Excellent consistency across channels in CMS
- Some tension with the latest
 Tevatron combination, which includes the new DØ lepton+jets measurement:

 $m_{top} = 174.98 \pm 0.41(stat) \pm 0.41(JES) \pm 0.49(syst) GeV$

D0 collaboration: PRL 113 (2014) 032002

- Dedicated discussion ongoing between CMS and DØ experts:
 - additional cross-checks
 - (anti)correlations?
 - check with same generator
 Powheg2+Pythia6 P11C

 $m_t = 172.38 \pm 0.65 \text{ GeV } (0.38\%)$

Top mass in lepton+jets channel 8 TeV

TOP-14-001

Signature

- e/ μ + 4 jets, 2 b-tags (high purity selection)

Analysis using 'Ideogram' technique

- Apply kinematic fit (Pgof > 0.2)
- 2D-fit of mass and jet energy scale (JSF) using W-mass constraint
- Weight each fit solution by P_{gof}
- Measurement from max.likelihood in mass-JES plane

Dominant Uncertainties

- Jet energy resolution: 0.26 GeV
- Pile-up: 0.27 GeV
- Flavor-dependent jet energy scale, includes hadronization (PYTHIA vs HERWIG) 0.41 GeV
- ME-generator: 0.23 GeV

As precise as World Average

Top mass in all-hadronic channel 8 TeV

TOP-14-002

Signature

6 jets, 2 b-tags (high purity selection)

Analysis using 'Ideogram' technique

- Apply kinematic fit (Pgof > 0.1)
- 2D-fit of mass and jet energy scale (JSF) using W-mass constraint
- Include one fit solution per event
- Measurement from max.likelihood in mass-JES plane

Dominant Uncertainties

- p_T and η-dependent JES: 0.28 GeV
- Pile-up: 0.31 GeV
- Flavour-dependent jet energy scale, includes hadronization (PYTHIA vs HERWIG) 0.36 GeV
- ME-generator: 0.21 GeV

As precise as World Average

Systematics I+jets / all-hadronic

all-hadronic channel competitive with lepton+jets channel

- Higher branching ratio
- No neutrinos
- Full kinematics available
- Higher jet p_T cuts (trigger)
- Lower purity

	2D	JSF	1D
	$\delta m_{\rm t}^{\rm 2D}$ (GeV)	δ JSF	$\delta m_{\rm t}^{\rm 1D}$ (GeV)
Experimental uncertainties			
Fit calibration	0.10	0.001	0.06
p_{T} - and η -dependent JES	0.18	0.007	1.17
Lepton energy scale	0.03	< 0.001	0.03
MET	0.09	0.001	0.01
Jet energy resolution	0.26	0.004	0.07
b tagging	0.02	< 0.001	0.01
Pileup	0.27	0.005	0.17
Non-tī background	0.11	0.001	0.01
Modeling of hadronization			
Flavor-dependent JSF	0.41	0.004	0.32
b fragmentation	0.06	0.001	0.04
Semi-leptonic B hadron decays	0.16	< 0.001	0.15
Modeling of the hard scattering process			
PDF	0.09	0.001	0.05
Renormalization and	0.12±0.13	0.004 ± 0.001	0.25±0.08
factorization scales	0.12±0.13	0.004±0.001	0.25±0.00
ME-PS matching threshold	0.15 ± 0.13	0.003 ± 0.001	$0.07{\pm}0.08$
ME generator	0.23 ± 0.14	0.003 ± 0.001	0.20 ± 0.08
Modeling of non-perturbative QCD			
Underlying event	$0.14{\pm}0.17$	0.002 ± 0.002	0.06 ± 0.10
Color reconnection modeling	0.08 ± 0.15	0.002 ± 0.001	0.07 ± 0.09
Total	0.75	0.012	1.29

	100	200	m _{fit} [GeV]
	2 D	JSF	1D
	1	₽	
	$\delta m_{\rm t}^{\rm 2D}$ (GeV)	δ JSF	$\delta m_{\rm t}^{\rm 1D}$ (GeV)
Experimental uncertainties			
Fit calibration	0.06	< 0.001	0.06
p_{T} - and η -dependent JES	0.28	0.006	0.86
Jet energy resolution	0.10	0.001	0.01
b tagging	0.02	< 0.001	< 0.01
Pileup	0.31	0.001	0.30
Calorimeter JES of trigger confirmation	0.18	0.003	0.07
Non-tī background	0.22	0.002	0.08
Modeling of hadronization			
Flavor-dependent JSF	0.36	0.004	0.30
b fragmentation	0.07	0.001	0.03
Semi-leptonic B hadron decays	0.12	< 0.001	0.12
Modeling of the hard scattering process			
PDF	0.02	< 0.001	0.01
Renormalization and	0.19±0.19	0.004 ± 0.002	0.18 ± 0.14
factorization scales			
ME-PS matching threshold	0.20±0.19	0.002 ± 0.002	0.09 ± 0.14
ME generator	0.09 ± 0.21	0.003 ± 0.002	0.17 ± 0.15
Modeling of non-perturbative QCD			
Underlying event	0.13 ± 0.28	0.000 ± 0.002	0.11 ± 0.20
Color reconnection modeling	0.00 ± 0.25	0.000 ± 0.002	0.03 ± 0.18
Total	0.83	0.011	1.05

Systematics I+jets / all-hadronic

all-hadronic channel competitive with lepton+jets channel

- Higher branching ratio
- No neutrinos
- Full kinematics available
- Higher jet p_T cuts (trigger)

S ... 2D (C-X7)

Lower purity

	jet reconstruction / pile-up	$\frac{\delta m_{\rm t}^{\rm 2D} ({\rm GeV})}{ }$		$\delta m_{\rm t}^{\rm 1D}$ (GeV)
Experimental uncertainties Fit calibration p _T - and η-dependent JES Lepton energy scale MET Jet energy resolution b tagging	p_{T} - and η -dependent JES Jet energy resolution Pileup	0.18 0.28 0.26 0.10 0.27 0.31		0.06 0.86 0.01 <0.01 0.30 0.07
Pileup Non-tt background Modeling of hadronization Flavor-dependent JSF b fragmentation Semi-leptonic B hadron deca Modeling of the hard scatter PDF Renormalization and	hadronization modeling Flavor-dependent JSF b fragmentation Semi-leptonic B hadron decays	$\begin{array}{c c} \delta m_{\rm t}^{\rm 2D} ({\rm GeV}) \\ \hline 0.41 & 0.36 \\ 0.06 & 0.07 \\ 0.16 & 0.12 \\ \end{array}$		0.08 0.30 0.03 0.12 0.01 0.18±0.14
factorization scales ME-PS matching threshold ME generator Modeling of non-perturbativ Underlying event Color reconnection modeling	Total	$ \begin{array}{c c} \delta m_{\rm t}^{\rm 2D} ({\rm GeV}) \\ \hline 0.75 & 0.83 \end{array} $	0.83 0.011	0.18±0.14 0.09±0.14 0.17±0.15 0.11±0.20 0.03±0.18 1.05

Most other (QCD) uncertainties appear to be small

- Invariant mass observable: small sensitivity to most of the modeling effects
 - PDF4LHC, factorization and renormalization scales, ME-PS matching threshold

ME generator:

(LO) MG+Pythia6 vs (NLO) Powheg+Pythia6

+ 100% of pt(top) modeling discrepancy

Perugia11 default vs "mpiHi" vs "Tevatron"

Perugia11 default (CR) vs NoCR – conservative?

	Officerrying Everit.
_	Color reconnection model:

Underlying Event

	2D	JSF	1D
	1	4	1
	$\delta m_{\rm t}^{\rm 2D}$ (GeV)	δ JSF	$\delta m_{\rm t}^{\rm 1D}$ (GeV)
Experimental uncertainties			
Fit calibration	0.10	0.001	0.06
p_{T} - and η -dependent JES	0.18	0.007	1.17
Lepton energy scale	0.03	< 0.001	0.03
MET	0.09	0.001	0.01
Jet energy resolution	0.26	0.004	0.07
b tagging	0.02	< 0.001	0.01
Pileup	0.27	0.005	0.17
Non-tī background	0.11	0.001	0.01
Modeling of hadronization			
Flavor-dependent JSF	0.41	0.004	0.32
b fragmentation	0.06	0.001	0.04
Semi-leptonic B hadron decays	0.16	< 0.001	0.15
Modeling of the hard scattering process			
PDF	0.09	0.001	0.05
Renormalization and	0.12±0.13	0.004 ± 0.001	0.25±0.08
factorization scales	0.12±0.13	0.004±0.001	0.25±0.06
ME-PS matching threshold	0.15 ± 0.13	0.003 ± 0.001	0.07±0.08
ME generator	0.23 ± 0.14	0.003 ± 0.001	0.20 ± 0.08
Modeling of non-perturbative QCD			
Underlying event	$0.14{\pm}0.17$	0.002 ± 0.002	0.06 ± 0.10
Color reconnection modeling	0.08 ± 0.15	0.002 ± 0.001	0.07 ± 0.09
Total	0.75	0.012	1.29

	2D	JSF	1D
	$\delta m_{\rm t}^{\rm 2D}$ (GeV)	δ JSF	$\delta m_{\rm t}^{\rm 1D}$ (GeV)
Experimental uncertainties			
Fit calibration	0.06	< 0.001	0.06
p_{T} - and η -dependent JES	0.28	0.006	0.86
Jet energy resolution	0.10	0.001	0.01
b tagging	0.02	< 0.001	< 0.01
Pileup	0.31	0.001	0.30
Calorimeter JES of trigger confirmation	0.18	0.003	0.07
Non-tī background	0.22	0.002	0.08
Modeling of hadronization			
Flavor-dependent JSF	0.36	0.004	0.30
b fragmentation	0.07	0.001	0.03
Semi-leptonic B hadron decays	0.12	< 0.001	0.12
Modeling of the hard scattering process			
PDF	0.02	< 0.001	0.01
Renormalization and factorization scales	$0.19{\pm}0.19$	0.004 ± 0.002	$0.18{\pm}0.14$
ME-PS matching threshold	0.20 ± 0.19	0.002 ± 0.002	0.09±0.14
ME generator	$0.09{\pm}0.21$	0.003 ± 0.002	0.17±0.15
Modeling of non-perturbative QCD			
Underlying event	0.13 ± 0.28	0.000 ± 0.002	0.11 ± 0.20
Color reconnection modeling	0.00 ± 0.25	0.000 ± 0.002	0.03 ± 0.18
Total	0.83	0.011	1.05

Jet Energy Scale: Flavour Dependence at 7 TeV

- Light-quark jet energy scale (JES)
 constrained in-situ in ttbar with 2D fit
 based on W→jj decay
- B-quark jets: Rely on MC to describe the relative difference compared to light jets
 - Requires correct modeling of jet hadronization differences
- CMS 7 TeV: For uncertainty on ratio of b-JES vs light-quark-JES, using centrally provided "Jet Flavor" uncertainty in
- Determined from difference between Herwig++ and Pythia6 Z2 predictions for the JES ratios for different jet flavors
- "Jet Flavor" = envelope of all jet flavors =
 ~2x larger than estimate for b-jet vs light-jet
 = believed to be conservative for TOP
 analysis

7 TeV top mass, I+jets

- Pythia vs Herwig++ in JES:
 Δmtop = 0.61 GeV (published)
- Pythia vs Herwig AUET2 <u>in ttbar</u>:

 Δmtop = 0.58 GeV (*)

 add also semi-leptonic BR

 Δmtop = 0.10 GeV

 and b-fragmentation functions

 Δmtop = 0.15 GeV

alternative CMS proposal: use combination of these

3 instead of standard bJES uncertainty CMS, 19.7 fb⁻¹ at √s = 8 TeV

- (*) Some doubts about the CMS ttbar POWHEG + Herwig AUET2 sample
 - Not tuned to CMS data
 - Unexpected b-tagging performance
 - Different UE? (double counting?)
 - Unexpected top p_T distribution
 ... related to "parton re-shuffling issue"
- \rightarrow prefer to treat top p_T as separate uncertainty

Jet Energy Scale: Flavour dependence at 8 TeV

- NEW: JES Flavour uncertainty (Pythia vs Herwig++) now available for individual jet flavours → allows proper propagation to final analysis
- Typical size of uncertainty for Δmtop : 0.4 GeV (Preliminary)

- Add uncertainty semi-leptonic BRs for B⁰ and B⁺⁻ hadrons (fraction of neutrinos in b jets...)
 -0.45% +0.77% [from PDG]
 Δmtop = 0.16 GeV
- and b-fragmentation functions Δ mtop = 0.06 GeV

(preliminary TOP-14-001)

B-jet fragmentation

$$f(z) \propto \frac{1}{z^{1+r \cdot bm_{\perp}^2}} (1-z)^a \exp\left(\frac{-bm_{\perp}^2}{z}\right)$$

Tune r_b parameter (= r for b-jets only) to LEP data in RIVET using Professor tool

- → default Z2* value outside range (P8 default is OK)
- → Quote full difference Z2* vs Z2*rbLEP

Tune	r_b	χ^2	Ndf
Z2*rbLEP	$0.591^{+0.216}_{-0.275}$	69.0	28
$-\operatorname{soft}$	0.807	138.0	28
- hard	0.316	138.0	28
Z2*	1.0		
PYTHIA 8 default	0.67		

New: b-jet calibration with b+Z events in data

Source of systematic uncertainty	Systematic uncertainty
Lepton flavor	0.09%
Purity (b-tagging)	0.07%
Alpha variation	0.07%
B-tagging efficiency/mistag rate	0.05%
Neutrinos	0.32%
Fragmentation	0.04%
Jet multiplicity	0.15%
TOTAL	0.38%
TOTAL (without neutrinos)	0.21%

JME-13-001

- Use p_T balance between b-jet and a well-measured object Z (→2 leptons)
- Interested in relative calibration wrt flavor-inclusive sample, compared to the MC prediction $(R_b / R_{inclusive})_{MC} / (R_b / R_{inclusive})_{data}$
- Conclusion: flavor-dependent differences are well reproduced by MC the additional average correction factor would be:

 $0.998 \pm 0.004 \text{ (stat)} \pm 0.002 \text{ (syst)}$

Strong data-based confirmation of b-jet energy scale! (only used as cross-check)

Cluster vs string fragmentation in Sherpa

- Very challenging to compare different hadronisation models on equal footing...
- Here: particle-level study using Sherpa 2.1
 - Use same parton shower (CSShower++)
 - Exchange:
 - Built-in sherpa cluster fragmentation (AHADIC++, HADRONS ++)
 - Pythia 6.4.18 lund string fragmentation
- Check effect on particle jet response (particle jet energy inc. neutrinos* vs matched parton)
 - Differences cluster/string are extremely small
 - Limits possible out-of-jet effects
- For events with m_W in 70-90 GeV range, reconstructed top mass agrees < 10 MeV
- (*) larger effect seen when neutrinos are excluded, due to high semi-leptonic BR in cluster model, outside PDG range

Intermediate conclusion JES + hadronization

- Hadronization uncertainty (Herwig vs Pythia) accounted for in flavourdependent JES component
- Are there any outside-Jet effects that have not yet been taken into account?
- A number of cross-checks and additional studies performed:
 - MC@NLO+Herwig vs POWHEG+Pythia6 : Δmtop = 0.33 GeV
 - Sherpa 2.1 Cluster vs String: Δmtop < 0.01 GeV
 - B fragmentation, BRs, pt(top) treated separately
 - → VERY difficult to do proper comparison of modeling uncertainties! In principle requires full re-tuning and re-calibration of alternative model AND excellent statistical precision
- So far picture is consistent with NO sizeable additional effects, that are not already taken into account
- Further refinement of these studies will require detailed understanding (or active removal) of double-counting... one study planned is D0 approach: evaluate Herwig vs Pythia difference using particle-level jet energies after applying reco-level selection

What about the mass interpretation?

- We can validate the modeling of perturbative and nonperturbative QCD effects in our MC programs, with ever increasing precision
- The question remains: what is the exact (QField-Theoretical)
 meaning of the mass parameter that is extracted? mostly a
 theoretical question
- See dedicated talk later today (A. Hoang)
- Contribution from experimental side:
 - Study dependence of extracted mass on event kinematics
 - Use alternative mass extraction methods

Top Mass: Kinematic Dependence

- Probe for issues with QCD modeling or Mass Definition by looking for kinematic dependence in extracted top mass
- Investigate distributions with sensitivity to
 - Color reconnection
 - ISR/FSR
 - b-quark kinematics
- Figures: m_{top} <m_{top}>
- Check 14 variables; ≈ 50 total bins

	q	B PI
S	q	T Pn

m₁10 - <m₁10> [GeV]

• Data	MG, Pythia P11
3 MG, Pythia Z2*	MG, Pythia P11noCR
Powheg, Pythia Z2*	MC@NLO, Herwig 6
2	<u> </u>
1	
0 1	TOP-14-001
1	+
0	••••••••••••••••••••••••••••••••••••••
0 100 20	0 300 4 p _{T,t,had} [GeV

CMS Preliminary, 19.7 fb -1. $\sqrt{s} = 8$ TeV. I+iets

CMS Top Mass with alternative techniques

Alternative methods with different systematic uncertainties or mass definition

- For example: m^{pole} top from the inclusive cross-section
- <u>NEW</u>: use differential distribution of observable that can be calculated perturbatively
- Other measurements in preparation

New: use m_{lb} distribution and forward folding

- Signature di-lepton channel
 - 2 leptons, ≥ 2 jets, ≥1 b-tags
 - Plot mass of b-jet (highest p_T) and lepton that gives lowest m_{Ib} → correct in 85%
- Introduces "Forward Folding Matrix"
 - Encodes detector efficiency and resolution
 - Forward folding matrices to be provided for all systematic variations
- Can be used with any theoretical calculation that gives m_{lb} in fiducial volume
 - Here: use Madgraph+Pythia as input
 - blinded analysis
 - Extraction also performed with MCFM (NLO pole mass): yields 171.4 ± 1.1 GeV
 ... using NLO production + LO decay
 (LO prod and decay): 171.5
 (full NLO prod and decay) 172.3

m_t = 172.3 ± 1.33 GeV (0.77%)

Top mass in CMS: outlook

- Finalize Run1 publications
- We can still learn from 8 TeV data to further tune and constrain MC models and variations
- For Run2: implement and validate new (NLO+PS, multi-leg) MC Tools
- Large potential for enhanced precision, from improved MC tools and understanding, new analysis techniques, and huge statistics in Run2 and beyond

Preview of new MC Tools for Run2

Invariant mass of leading b-jet in ttbar, lepton+jets selection, using RIVET, simulation only Ratio = comparison to MG+Pythia6 Z2*

P8 CUEP8M1 tune looks promising (based on Monash + UE tune CMS/CDF data)

Preview of new MC Tools for Run2

Invariant mass of leading b-jet in ttbar, lepton+jets selection, using RIVET, simulation only Ratio = comparison to MG+Pythia6 Z2*

P8 and H++

POWHEG

Why is H6 so different from H++?

Conclusions

- Complete set of (standard) 8 TeV top mass results available
 - Systematic uncertainties refined and improved wrt 7 TeV
- New analysis approach: m_{lb} spectrum with forward folding matrix
 - and a number of other alternative methods in preparation
- Overall good consistency between all measurements
- Hadronization uncertainty included in JES, confirmed by new b-JES measurement in b+Z events
 - so far studies confirm picture that out-of-jet effects are negligible or accounted separately (MC tune, radiation, pt(top))
- Validating new MC Tools for Run 2!