The top quark mass from the b quark Energy Peak: first NLO results

Roberto Franceschini January 13th 2015

Work in Progress with K. Agashe, D. Kim and M. Schulze

Status

measurement at ≤0.5%! ⇒ precision QCD

• precision is systematics limited (JES, ..., hadronization)

The strength of the future LHC top mass measurement will build on the **diversity of methods** ⇒ not very useful to talk about "*single best measurement*"

Each methods based on different <u>assumptions/beliefs</u>

- kinematics of the event (going beyond tī→ bWbW)
- MC *choices* (NLO, scales range & functional form ...

... width treatment, color neutralization, radiation in decays, hadronization)

Ideal situation

Have many inherently different methods

possibly based on different experimental objects/quantities

- deal with reconstructed jets
- only-leptons
- only-tracks

Ideal situation

CMS-PAS-FTR-13-017

1310.0799 - Juste, Mantry, Mitov, Penin, Skands, Varnes, Vos, Wimpenny -Determination of the top quark mass circa 2013: methods, subtleties, perspective

Energy Peaks

Lorentz variant quantities

Given suitable conditions, Lorentz variant quantities can tell us a lot about the invariants

How special is this invariance?

The sensitivity to the **boost distribution** is the key

properties similar to Lorentz invariants without the need to form combinations

Useful in practice?

 $E_{b}^{\times} = \frac{m_{t}^{2} - m_{w}^{2} + m_{b}^{2}}{2m_{t}}$

b-jet energy (LO+PS)

100 pseudo-experiments from <u>MadGraph5+Pythia6.4+Delphes</u> (**ATLAS-2012-097**)

2-parameters fit: peak position, width of the distribution

Proof of the concept: 5/fb LHC 7 TeV

mtop=173.1 ± 2.5 GeV (stat)

1209.0772 - Agashe Franceschini and Kim

message: LO effects are well under control -> CMS at work!

very encouraging LO result with b-jet energy

after having explored a number of **new physics applications** of this idea

- 1212.5230 Agashe, RF, Kim, Wardlow
- 1309.4776 Agashe, RF, Kim
- 1403.3399 Chen, Davoudiasl, Kim
- Agashe, RF, Kim, Wardlow WIP
- Agashe, RF, Kim, Hong WIP

extension to NLO in progress

your inputs are very welcome

NLO: production & decay

(MCFM)

Agashe, Franceschini, Kim, Schulze - in preparation

NLO virtues Agashe, Franceschini, Kim, Schulze - in preparation

- Invariance holds for pp→tt @ NLO
- Not sensitive to Initial State Radiation
- Not sensitive to Parton Distribution Functions
- Not sensitive to the exact energy of the collider

only sensitive to the NLO decay t→bWg

Insensitive to production at NLO

Agashe, Franceschini, Kim, Schulze - in preparation

Production NLO only affects the boost distribution of top

The energy peak position is unchanged

$$E_{b}^{\mu\nu k} = \frac{m_{t}^{2} - m_{w} + m_{b/j}}{2m_{t}} = E_{b}^{*}$$

NLO virtues

- Invariance holds for pp→tt @ NLO
- Not sensitive to Initial State Radiation
- Not sensitive to Parton Distribution Functions
- Not sensitive to the exact energy of the collider

only sensitive to the NLO decay t→bWg

Effect of initial state radiation

ISR only affects the boost distribution of top

Agashe, Franceschini, Kim, Schulze - in preparation

NLO virtues

- Invariance holds for pp→tt @ NLO
- Not sensitive to Initial State Radiation
- Not sensitive to Parton Distribution Functions
- Not sensitive to the exact energy of the collider

only sensitive to the NLO decay t→bWg

Decay at NLO

Agashe, Franceschini, Kim, Schulze - in preparation

Peak shift at NLO

1. energy distribution $d\sigma/dE_{\rm b}$

very little sensitive to the scale choice (less than 400 MeV on mtop)

NLO: production

(MCFM)

m_{top}(Fit) [GeV]

NLO: production

decay NLO sensitive to the scale choice: ±1 GeV on mtop

decay NLO sensitive to the scale choice: ±1 GeV on mtop

decay NLO sensitive to the scale choice: ±0.5 GeV on mtop

NLO: production & decay

(MCFM)

Agashe, Franceschini, Kim, Schulze - in preparation

decay NLO sensitive to the scale choice: ± 1 GeV on m_{top}

Mild corrections from NLO

Agashe, Franceschini, Kim, Schulze - in preparation

$$\hat{E} = E_{LO}^* \cdot \begin{bmatrix} 1 + f_{pol} + \epsilon_{FSR} \\ \uparrow & \uparrow \\ \leq 3 \cdot 10^{-3} &\leq 0.1 \end{bmatrix} \begin{pmatrix} C_{bWg} + \underbrace{\delta_{int} + \delta_{PDFs} + \dots}_{\delta_{prod}} \end{pmatrix} \end{bmatrix}$$

$$O_{NLO} = O_{LO} \cdot \left[1 + \underbrace{\delta_{int} + \delta_{PDFs} + \dots}_{\delta_{prod}} \right]$$

Conclusions

- "invariance" holds when only NLO production corrections are considered
- full NLO gives δm_{top}≃±1 GeV scale sensitivity for any jet size parameter R
- work in progress to exploit the R dependence to improve results
- chances that a NNLO <u>decay</u> description would be enough to make a solid prediction at $\delta m_{\text{top}} \approx 500 \text{ MeV}$

To Do (in progress)

- explore minimal sensitivity to scale choice at R~0.82
- check effects of cuts
- compare to moments of $d\sigma/dE_{\rm b}$
- B-hadron energy

To Do (2)

explore:

- tt vs. bWbW
- shower effects
- non-perturbative effects

Back-up

very little sensitive to the scale choice (less than 400 MeV on mtop)

A simple, yet subtle, invariance of the two body decay

1209.0772 - Agashe, Franceschini and Kim

Event-by-event we cannot tell anything

Fixed top boost decay Massless b-quark (for now) $E_{e,b} = E_{b}^{*} (\chi + \chi \beta \cos \vartheta)$

unpolarized top sample \rightarrow cos θ is flat

Lab-frame energy distribution

There is no difference when the b-mass is taken into account provided $\gamma_{top} < 500$

back

$\mu_{\rm F} \neq \mu_{\rm R}$

Fit Variations p&d-NLO

Fit Variations p&d-NLO

$OMCFM fixed \mu = m_{top}$ (E=67.9 GeV)

1par Exp(x+1/x)

Events/4. GeV

2 pars Exp(x+1/x)

pNLO MCFM fixed $\mu = m_{top}$ (E=67.9 GeV)

1 par Exp(x+1/x)

