The Top Mass and Monte Carlos

André H. Hoang

University of Vienna

TOP LHC WG, Jan 12 - 13, 2015

Motivation

- \rightarrow Most precise mass from direct reconstruction: $m_t^{\text{MC}} = 173.34 \pm 0.76 \,\text{GeV}$
- $\rightarrow m_t^{MC}$ cannot be used as direct input into NLO/NNLO calculations since it is not a field theoretic mass.

Outline

<u>Part 1:</u> \rightarrow Theoretical thoughts on m_t^{MC}

• How $m_t^{\rm MC}$ is related to field theoretic masses.

See: "The Top Mass: Interpretation and Theoretical Uncertainties", arXiv:1412.3649 Same conclusions: AH, Stewart: arXive:0808.0222

<u>Part 2:</u> \rightarrow Towards a determination of m_t^{MC}

- Variable Flavor Number Scheme for final state jets.
 Full massive event shape distribution
- First encouraging preliminary results

Top Quark Mass

- $ightarrow ~\overline{m}(\mu)$ is pure UV-object without IR-sensitivity
- \rightarrow Useful scheme for $\mu > m$
- \rightarrow Far away from a kinematic mass of the quark

<u>Pole scheme:</u> $m^0 = m^{\text{pole}} \left[1 - \frac{\alpha_s}{\pi \epsilon} + \dots \right] - \Sigma^{\text{fin}}(m^{\text{pole}}, m^{\text{pole}}, \mu)$

- \rightarrow Absorbes all self energy corrections into the mass parameter
- \rightarrow Close to the notion of the quark rest mass (kinematic mass)
- → Renormalon problem: infrared-sensitive contributions from < 1 GeV that cancel between self-energy and all other diagrams cannot cancel.</p>
- \rightarrow Has perturbative instabilities due to sensitivity to momenta < 1 GeV (Λ_{QCD})

Should not be used if uncertainties are below 1 GeV !

Heavy Quark Mass

$$= p - m^{0} - \Sigma(p, m^{0}, \mu)$$

$$+ \underbrace{\sum \sum \sum \sum m^{0}}_{\Sigma(m^{0}, m^{0}, \mu)} = m^{0} \left[\frac{\alpha_{s}}{\pi \epsilon} + \dots \right] + \underbrace{\Sigma^{\text{fin}}(m^{0}, m^{0}, \mu)}_{\Sigma(m^{0}, m^{0}, \mu)}$$

$$\underline{\text{MS scheme:}} \quad m^{0} = \overline{m}(\mu) \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots \right]$$

$$\underline{\text{Pole scheme:}} \quad m^{0} = m^{\text{pole}} \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots \right] - \Sigma^{\text{fin}}(m^{\text{pole}}, m^{\text{pole}}, \mu)$$

MSR scheme:
$$m^{MSR}(R) = m^{\text{pole}} - \Sigma^{\text{fin}}(R, R, \mu)$$
 Jain, AH, Scimemi, Stewart (2008)

- \rightarrow Like pole mass, but self-energy correction from <R are not absorbed into mass
- \rightarrow Interpolates between MSbar and pole mass scheme

 $m_t^{\text{MSR}}(R=0) = m^{\text{pole}}$ $m_t^{\text{MSR}}(R=\overline{m}(\overline{m})) = \overline{m}(\overline{m})$

- \rightarrow More stable in perturbation theory.
- $\rightarrow m_t^{MSR}(R = 1 \, \text{GeV})$ close to the notion of a kinematic mass, but without renormalon problem.

Heavy Quark Mass in the MC

Monte-Carlo event generator:

Hard matrix element:

Initial parton annihilation and top production plus additional hard partons from pQCD.

Parton shower evolution:

colour singlets colourless clusters cluster fission cluster → hadron hadronic decays Splitting into higher-multiplicity partonic states (plus top decay) with subsequently lower virtualities until

shower cut Λ_s . NO top self-energy contributions.

Splitting probabilities from pQCD (approx LL accuracy, soft-collinear limit).

Can be viewed as a way to sum dominant perturbative corrections down to Λ_s = 1 GeV.

Hadronization model:

Turns partons into hadrons.

Tune strongly dependent on parton shower implementation.

Description of data (frequently) much better than the conceptual (LL) precision of parton evolution part.

MC mass:

Mass of top propagator prior to top decay.

Interpretation of m_t^{MC} dependent on view whether MC is more model or or more first principles QCD.

 hard scattering (QED) initial/fina tate radiation

> partonic decays, e.g $t \to b W$ parton showe evolution

Heavy Quark Mass in the MC

Let's take the reconstructed top invariant mass distribution as a concrete example to see how the MC components enter the templates and the MC mass fitting.

Hard matrix element:

Essentially only affects the norm

• MC mass:

Determines overall location of mass range where distribution is peaked.

• Parton shower evolution + Hadronization model:

Modify shape and distribution further.

PS: perturbative part - self-energy contributions absorbed into mass above Λ_s HM: non-perturbative part below Λ_s

be determined.

$$m_t^{\mathrm{MC}} = m_t^{\mathrm{MSR}}(R = 1 \,\mathrm{GeV}) + \Delta_{t,\mathrm{MC}}(R = 1 \,\mathrm{GeV})$$

 $\Delta_{t,\mathrm{MC}}(1 \,\mathrm{GeV}) \simeq \mathcal{O}(1 \,\mathrm{GeV})$

Contains perturbative and non-perturbative contributions. Conceptual reliability related to how precisely $\Delta_{t,MC}$ can

Analogy: Meson masses

 $m_B = m_b^{\text{MSR}}(1 \,\text{GeV}) + \Delta_{b,B}(R = 1 \,\text{GeV})$ $\Delta_{b,B}(1 \,\text{GeV}) \simeq \mathcal{O}(1 \,\text{GeV})$

Table 1. Some B mesons masses, MSR masses $m_b^{\text{MSR}}(1 \text{ GeV})$ and $m_b^{\text{MSR}}(2 \text{ GeV})$ from $m_b^{1\text{S}} = 4780 \pm 66 \text{ MeV} [18]$, and corresponding values for $\Delta_{b,B}$. All in units of MeV, $\alpha_s(m_Z) = 0.1184$.

$m_b^{\rm MSR}(1{\rm GeV})$	$m_b^{\rm MSR}(2{\rm GeV})$	$m(B^0)$	$m(B^*)$	$m(B_{1}^{0})$	$m(B_2^*)$
4795 ± 69	4571 ± 69	5279.58 ± 0.17	5325.2 ± 0.4	5724 ± 2	5743 ± 5
$\Delta_{b,B}(1{\rm GeV})$		485 ± 69	530 ± 69	929 ± 69	948 ± 69
	$\Delta_{b,B}(2{ m GeV})$	709 ± 69	754 ± 69	1153 ± 69	1172 ± 69

Additional Comments

- Using NLO vs. LO matrix elements does not affect the interpretation of the MC mass
- Different parton evolution implies in principle a different MC mass.
- Relation of MC to MSR mass can be used to deal with mass dependent efficiencies for total cross section measurements.
- MC mass should be independent of the process and kinematic region used for fitting.

Theory Tools to Measure the MC mass

<u>Part 2</u>

The relation between MC mass and field theoretical mass can be made more precise by measuring the MC mass using a <u>completely independent</u> hadron level QCD prediction of a mass-dependent observable.

Need:

- Accurate analytic QCD predictions beyond LL/LO with full control over the quark mass dependence
- Theoretical description at the hadron level for comparison with MC at the hadron level
- Implementation of massive quarks into the SCET framework
- VFNS for final state jets (with massive quarks)*

```
* In collaboration with: P. Pietrulewicz, V. Mateu, I. Jemos, S. Gritschacher
arXiv:1302.4743 (PRD 88, 034021 (2013))
arXiv:1309.6251 (PRD 89, 014035 (2013))
arXiv:1405.4860 (PRD 90 114001 (2014))
More to come ...
```


Theory Tools to Measure the MC mass

Observable: Thust in e+e-

$$\tau = 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{Q}$$
$$\tau \stackrel{\tau \to 0}{\approx} \frac{M_1^2 + M_2^2}{Q^2}$$

Invariant mass distribution in the resonance region !

Factorization for Massless Quarks

VFN Scheme for Final State Jets

- \rightarrow consider: dijet in e⁺e⁻ annihilation, n_l light quarks \oplus one massive quark
- \rightarrow obvious: (n₁+1)-evolution for $\mu \gtrsim m$ and (n₁)-evolution for $\mu \leq m$
- \rightarrow obvious: different EFT scenarios w.r. to mass vs. Q J S scales

 $\mu_H \sim Q$ Q $\mu_J \sim Q \sqrt{\tau}$ $n_l + 1$ m $\mu_S \sim Q \tau$ n_l $Q\Lambda_{QCD}$ τ Λ_{QCD} 0.1 0.3 0.0 0.2 0.4 05

"profile functions"

- \rightarrow Deal with collinear and soft "mass modes"
- ightarrow Additional power counting parameter $\lambda_m = m/Q$

mode	${\pmb ho}^\mu = (+,-,\perp)$	p ²
<i>n</i> -coll MM	$Q(\lambda_m^2, 1, \lambda_m)$	m^2
soft MM	$Q(\lambda_m, \lambda_m, \lambda_m)$	m^2

Aims:

• Full mass dependence (little room for any strong hierarchies): decoupling, massless limit

Gritschacher, AH,

Jemos, Pietrulewicz

- Smooth connections between different EFTs
- Determination of flavor matching for current-, jet- and soft-evolution
- Reconcile problem of SCET₂-type rapidity divergences

TOP LHC WG, Jan 12 - 13, 2015

VFN Scheme: Primary Massive Quarks

MC vs. SCET: Primary Bottom Production

Preliminary !!

Denahdi, AHH, V. Mateu

Compare MC with SCET (pQCD, summation, hadronization effects) @ NNLL for Thrust

- Take central values for α_s and Ω_1 from our earlier NNLL thrust analysis for data on all-flavor production (=massless quarks) $\alpha_s(M_Z) = 0.1192 \pm 0.006$ $\Omega_1 = 0.276 \pm 0.155$
- Compare with Pythia (m_b^{Pythia}=4.8 GeV) for consistency and mass sensitivity
- Which mass does m_b^{Pythia}=4.8 GeV correspond to for a field theoretic bottom mass?

order	$\overline{\Omega}_1$ ($\overline{\mathrm{MS}}$)	Ω_1 (R-gap)	order	$lpha_s(m_Z) \; (ext{with} \; ar{\Omega}_1^{\overline{ ext{MS}}})$	$lpha_s(m_Z) \; (ext{with} \; \Omega_1^{ ext{Rgap}})$
\mathbf{NLL}'	0.264 ± 0.213	0.293 ± 0.203	NLL'	0.1203 ± 0.0079	0.1191 ± 0.0089
NNLL	0.256 ± 0.197	0.276 ± 0.155	NNLL	0.1222 ± 0.0097	0.1192 ± 0.0060
NNLL'	0.283 ± 0.097	0.316 ± 0.072	\mathbf{NNLL}'	0.1161 ± 0.0038	0.1143 ± 0.0022
$N^{3}LL$	0.274 ± 0.098	0.313 ± 0.071	$N^{3}LL$	0.1165 ± 0.0046	0.1143 ± 0.0022
$ m N^3 LL'$ (full)	0.252 ± 0.069	0.323 ± 0.045	$N^{3}LL'$ (full)	0.1146 ± 0.0021	0.1135 ± 0.0009
$\mathrm{N}^{3}\mathrm{LL'}_{(\mathrm{QCD}+m_{b})}$	0.238 ± 0.070	0.310 ± 0.049	$\mathrm{N}^{3}\mathrm{LL'}_{(\mathrm{QCD}+m_b)}$	0.1153 ± 0.0022	0.1141 ± 0.0009
$\rm N^3 L L'_{(pure QCD)}$	0.254 ± 0.070	0.332 ± 0.045	$ m N^3 LL'_{(pure QCD)}$	0.1152 ± 0.0021	0.1140 ± 0.0008

Abbate, Fickinger, AHH, Mateu, Stewart 2010

MC vs. SCET: Primary Bottom Production

TOP LHC WG, Jan 12 - 13, 2015

MC vs. SCET: Primary Bottom Production

Preliminary !! (No fit yet)

 $\overline{m}_b(\overline{m}_b) = 3.7, 4.2, 4.7 \text{ GeV}$ $\alpha_s(M_Z) = 0.1192$ $\Omega_1 = 0.276 \text{ GeV}$

Conclusions

- → The MC top mass parameter has the status of a hadronic parameter (comparable to a meson mass) and is therefore not a field theoretic mass definition
- → The issue is becomes relevant when uncertainties in the MC top mass are becoming smaller than 1 GeV.
- → Ignoring the issue means that there is a conceptual uncertainty of about 1 GeV one needs to account for when relating the MC mass to a field theory mass.
- \rightarrow Suitable field theory mass definition in this context: e.g. MSR mass (R=1-3 GeV)

$$m_t^{\mathrm{MC}} = m_t^{\mathrm{MSR}}(R = 1 \,\mathrm{GeV}) + \Delta_{t,\mathrm{MC}}(R = 1 \,\mathrm{GeV})$$

→ It is possible to relate the MS top mass to a field theoretic mass by fits of QCD calculations at the hadron level to MC output for very mass sensitive quantities.

Masses Loop-Theorists Like to use

MSbar Scheme: $(\mu > \overline{m}(\overline{m}))$ $\overline{m}(\overline{m}) - m^{\text{pole}} = -\overline{m}(\overline{m}) \left[0.42441 \,\alpha_s(\overline{m}) + 0.8345 \,\alpha_s^2(\overline{m}) + 2.368 \,\alpha_s^3(\overline{m}) + \ldots \right]$ $(R < \overline{m}(\overline{m}))$ MSR Scheme: $m_{\rm MSR}(R) - m^{\rm pole} = -R \left[0.42441 \,\alpha_s(R) + 0.8345 \,\alpha_s^2(R) + 2.368 \,\alpha_s^3(R) + \ldots \right]$ $m_{\rm MSR}(m_{\rm MSR}) = \overline{m}(\overline{m})$

 $\Rightarrow m_{
m MSR}(R)$ Short-distance mass that smoothly interpolates all R scales

- Excellent convergence of relation between MSR masses at different R values
- Excellent convergence of relation between MSR masses and other short-distance masses
- Smoothy interpolates to the MSbar mass.

MSR Mass Definition

Series with a Renormalon

- \rightarrow Behavior depends on the typical scale R of the observable ?
- \rightarrow Series for large R converge longer, but size of corrections at lower orders are large
- ightarrow Formal ambiguity always the same: $\Lambda_{
 m QCD}pprox 0.5~{
 m GeV}$

