# ATLAS+CMS top quark pair modelling uncertainties and correlations with single top



### Introduction

- Modelling and uncertainties for the  $t\bar{t}$  production @ NLO
  - Three main generators are available
    - Powheg → focus today
    - Madgraph5\_aMC@NLO
    - Sherpa
  - Focus on radiation systematic for NLO generators



- Scale variations / radiation systematic for Powheg + Pythia6
  - Variations of the hard scatter scale
  - Variations of the damping parameter  $h_{\text{damp}}$ 
    - Setting  $h_{\text{damp}}$  to a finite value effectively corresponds to damping of high- $p_T$  radiation in Powheg
    - Needs to be switched on, otherwise scale dependence underestimated at high- $p_T$
    - Powheg-specific, no need to do it in (Madgraph5\_a)MC@NLO!
- Correlations of uncertainties between  $t\bar{t}$  and single top

# Systematic uncertainties to be discussed

- Up to now:
  - <a href="https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TheorySystematics">https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TheorySystematics</a>
  - Focus today mostly on NLO+PS generators
- Baseline of list of systematic uncertainties is list from Rikkert for NLO + PS generators
  - Scale Variations/Radiation → main focus
  - Parton shower
  - PDF uncertainty
  - NLO-subtraction method
  - DR vs. DS (only for Wt)  $\rightarrow$  discussed in talk by Reinhard
- Processes for which uncertainties should be considered
  - $t\bar{t}$ , t-channel single top, s-channel single top, Wt channel
- Discuss possible correlation between processes
  - For Wt analysis most important, but also for t-channel

### Scale variations / Radiation

Systematic connected with the scales of the event. Sometimes also called as ISR/FSR or radiation systematic. Typically scale(s) and/or  $\alpha_s$  are changed. Variations should be checked with data, i.e. jet-gap / N-jet Rivet analysis

### Summary of already used variations in top publications:

- Liza's talk in last open TOPLHCWG meeting: https://indico.cern.ch/event/301787/session/10/contribution/22/material/slides/0.pdf
- ATLAS PUB note: ATL-PHYS-PUB-2014-005
  - CMS: MadGraph +Pythia6 (multi-leg), vary ren. scale (Q [GeV]) in ME and PS simultaneously by 1/2 and 2. In addition: vary fac. scale simultaneously as well.
  - ATLAS (since summer 2013): ALPGEN +PYTHIA6 (multi-leg), vary ren. scale (Q [GeV]) in ME and PS simultaneously by 1/2 and 2. In addition: retune UE. No fac. scale variation.
  - ATLAS: ACERMC +PYTHIA6 (Born-level), vary ren. scale (Q [GeV]) in PS (but not in ME) by  $\sim 1/2$  and 2 (exact range from data limits). In addition: vary hardest emission scale PARP(67)(data limits)

### Rivet analyses used for validation of variations

Gap fraction - Eur. Phys. J. C72 (2012) 2043

12.01.2015

- Jet multiplicities arXiv:1407.0891
- Top parton distributions Phys. Rev. D 90, 072004 (2014)

CMS analyses are being implemented but not ready yet.



Bergische Universität Wuppertal

# Gap fraction analysis

Dominic Hirschbühl

### Study fraction of $t\bar{t}$ events, that do not contain an additional jet(s):



- Eur. Phys. J. C72 (2012) 2043 Use dilepton events with two reconstructed b-quark jets
  - → additional (radiated) jets easily to identify

#### Provided unfolded distributions

Fraction of events that do not contain an additional jet in a central rapidity region with  $p_T > Q_0$ :

$$f_{gap}(Q_0) = \frac{n_{gap}(Q_0)}{N_{t\bar{t}}}$$

Sum of the  $p_T$  of the jets falling into each rapidity region

$$f_{gap}(Q_{sum}) = \frac{n_{gap}(Q_{sum})}{N_{t\bar{t}}}$$



### Official Rivet routine since Rivet 1.8.1

Similar Analysis from CMS:

- 7 TeV: arXiv:1404.3171
- 8 TeV: CMS-PAS-TOP-12-041

# Jet multiplicity and jet transverse momentum

### Particle level definition of objects:

$$E_{\mathrm{T}}^{\mathrm{miss}} > 30 \text{ GeV } \& \ m_{\mathrm{T}}(W) > 35 \text{ GeV}$$
 One or more b-jets 
$$\text{Three or more jets with } p_{\mathrm{T}} > 25 \text{ GeV } \& \ |\eta| < 2.5$$
 
$$e \ (\mu) \text{ with } p_{\mathrm{T}} > 25 \text{ GeV } \& \ |\eta| < 2.5$$
 No additional  $e \ (\mu) \text{ with } p_{\mathrm{T}} > 15 \text{ GeV } \& \ |\eta| < 2.5$  No  $\mu \ (e) \text{ with } p_{\mathrm{T}} > 15 \text{ GeV } \& \ |\eta| < 2.5$  No jet-jet pair with  $\Delta R < 0.5$  No jet-electron or jet-muon pair with  $\Delta R < 0.4$ 



- Selection of semileptonic  $t\bar{t}$  events, i.e. 4 jets "belong" to the  $t\bar{t}$ process, the 5<sup>th</sup> jet, ordered in  $p_T$ , corresponds to the first additional emission  $\rightarrow$  should be correlated to  $f_{qap}(Q_0)$ .
- B-tagging is done using ghost tagging, i.e. adding B-hadrons to the jet clustering

#### Provided unfolded distributions

- Jet multiplicities for jets with  $p_T > 25 \text{ GeV}, p_T > 40 \text{ GeV}, p_T > 60 \text{ GeV}, p_T > 80 \text{ GeV}$
- Jet  $p_T$  for the first five jets

arXiv:1407.0891

#### Official Rivet routine since Rivet 2.2.0

### Normalized differential distributions

### **Definition of top quarks:**

Selection of semileptonic  $t\bar{t}$  events Reconstruction of top quarks from jets, leptons and missing transverse momentum Unfolded to parton level where the top quark is defined directly before the decay and after QCD radiation.

#### Provided unfolded distributions

Transverse momentum of the top quark

12.01.2015

- Transverse momentum and rapidity of the  $t\bar{t}$  system
- Invariant mass of the  $t\bar{t}$  system

#### "Private" Rivet routine

- No chance to be included in Rivet because of parton level quantities
- So far, only compared with Pythia6 and Herwig (possible ambiguity in event record with C++ generators)



### Contents of studies

### Variations for Powheg

Can vary scales of the ME and the shower and  $h_{damp}$ 

- Scan of  $h_{damp}$  for  $h_{damp} = 0.5 \cdot m_t, m_t, 2 \cdot m_t, 4 \cdot m_t, \infty$
- Variations of renormalization/factorization scale  $\mu$  by a factor of 0.5 and 2
- Change Pythia6 tune: PerugiaRadHi / PerugiaRadLo

### Question to theorists on Powheg:

Which strategy is appropriate for choosing scales and  $h_{damp}$ ?

- Use only suggestion from "theory"
  - $h_{damp} = m_t$ ,  $\mu = 1$  as central values and variations of  $\mu$  and  $h_{damp}$
- Tune central values of  $h_{damp}$  and  $\mu$  to data and use variations (suggest from theory) as systematic
- Tune central values and variations to data
  - → which results are appropriate/sufficient to cover with uncertainty?

# $h_{damp}$ variations









- $h_{damp}$  effects mainly on  $p_T(t\bar{t})$  an gap fraction
- mild influence on high  $p_T$  tail of top quark
- no effect on rapidities.

# ME scale variations for different $h_{damp}$











For rapidity gap scale variations  $\approx h_{damp}$  variations

Jet multiplicity doesn't show big changes

Huge change in  $p_T(t\bar{t})$  and small changes in  $m(t\bar{t})$ 

Bergische Universität Wuppertal

### Correlated variations of ME and PS scales







12.01.2015



No big effect on gap fraction

# Comparison with Madgraph5\_aMC@NLO





12.01.2015





Scale/h<sub>damp</sub> variations in Powheg have approx. the same size as scale variations in Madgraph5\_aMC@NLO

ATL-PHYS-PUB-2014-003

# Summary scale variations

### Summary:

 $h_{damp}$  and ME scale variation have similar impact on observables.  $h_{damp} + 2$  ·scale and  $h_{damp} + 0.5$  ·scale covers the envelope of independent variations

Correlation with PS scale doesn't have a big influence in the studied observables.

None of the variations give good agreement in  $p_T(t)$ 

### Input from theory needed!

- How much should we tune these parameters and how much can we constrain the uncertainties from data?
- Which observables are suitable?
- Is there any parameter changing  $p_T(t)$ ?

For the (near) future:

How to deal with Multileg NLO matched and merged samples?

### Other uncertainties

**PDF:** Follow PDF4LHC recommendation (current one and then the future one)

- $\rightarrow$  a clear recipe should be provided by PDF4LHC
  - (Building the envelope of 200 EVs is horrible  $\rightarrow$  see also correlations)
    - 1) Simplicity. The "midpoint prescription" is not very suitable.
      - → Would like to have one PDF as default and then determine uncertainties, like it is done for all other model uncertainties.
    - 2) Reasonable uncertainties.
      - → Envelope approach may not be best estimate of uncertainty.

#### Choice of central PDF:

• NNPDF3.0 looks similar to the last generation of PDFs but has better modelling of  $y(t\bar{t})$ .





Dominic Hirschbühl



### Other uncertainties

#### **NLO** subtraction:

Comparison between two different methods, i.e. MC@NLO vs. Powheg

→ Is it possible to provide a single parameter variation within one NLO setup?

#### Parton shower / Hadronisation

Comparison between two different shower MC, e.g. Pythia vs. Herwig

- → We should ideally find out a way to estimate the double counting with other uncertainties
  - See also the two top mass talks from Fabrice and Markus tomorrow

Bergische Universität Wuppertal

# New generators

#### Comparison of new generators with Powheg+Pythia6

Powheg+Pythia8 → uses vetoed showers and AU2 tune

aMC@NLO+Herwig++  $\rightarrow$  UEEE5 tune







12.01.2015



aMC@NLO + Herwig++ looks promising

Powheg+Pythia8 predicts much harder additional radiation than Powheg+Pythia6 for the jet multiplicity, but only for higher jet bins.

How does the  $h_{damp}$  interplay with the matching to Pythia8?

### Correlations between processes

In general we always vary the same parameters.

- PDF uncertainty
  - → correlate (technically very difficult)

What about correlation between theory prediction and acceptance (e.g., NNLO vs NLO)? Currently we assume them to be uncorrelated

- Scale Variations / Radiation
  - → don't correlate: scale variation can have different impact, e.g. different initial states.

Question to theorists:

Does the systematic on the radiation depend on the initial state of the process, e.g. gluons vs. quarks?

Should  $h_{damp}$  also be set to a finite value for single top processes?

- Parton shower
  - $\rightarrow$  correlate
- NLO-subtraction method

 $\rightarrow$  correlate

If different generators for different processes are used, the story can be different.

### Summary

- Extend studies of scale /  $h_{damp}$  variations to new unfolded data
- Still very limited phase space for data comparisons
  - CMS is working on implementing their unfolded results in Rivet
  - Final 8 TeV analyses still to come
- Developed approach to access radiation systematic for NLO generators (particularly for the POWHEGBOX)
  - Variations of ren/fac scale by factor of 2 up and down combined with variation of  $h_{damp}$  by a factor of 2 seems reasonable.
  - Variations within parton shower doesn't show a big effect on the observables considered.
- Correlations of systematics between single top and  $t\bar{t}$  are being investigated → Open questions about radiation systematic
- Started to explore new C++ generators, aMC@NLO + Herwig++ looks promising, Powheg+Pythia8 is outside the uncertainty of Powheg+Pythia6 for the jet multiplicity, but only for higher jet bins.

# Backup



# Suggestion from theory



### **UNCERTAINTY ESTIMATES**

- For observables that have NLO precision, the theory/generator uncertainties can be estimated by
  - Independent renormalisation and factorisation scale variations
  - PDF error sets (preferably following the PDF4LHC agreement)
  - Matching an NLO computation to at least 2 different parton showers
  - These PDF and scale variations can be obtained via reweighting in aMC@NLO and POWHEG, not yet possible in Sherpa.
- For observables that do not have NLO precision, further uncertainties are coming from the shower starting scale ("Power" or "Wimpy" shower). Currently these cannot be approximated with the (a)MC@NLO program, but not really relevant because why use an NLO+PS computation for these observables in the first place?
  They can be estimated more correctly in the NLO Sherpa program.

Dominic Hirschbühl

Rikkert Frederix

PHYSICS AT THE

# Scale variations for NLO generators

| $\mu_f$ | $\mu_r$ | Shower  |
|---------|---------|---------|
| 0.5     | 0.5     | radHi   |
| 1       | 0.5     | radHi   |
| 0.5     | 1       | default |
| 1       | 1       | default |
| 2       | 1       | default |
| 1       | 2       | radLo   |
| 2       | 2       | radLo   |

Bergische Universität Wuppertal

12.01.2015