

Numerical optimizations on dielectric laser acceleration(DLA) of electrons in a grating-based microstructure

Yelong Wei

PhD student / Early Stage Marie Curie Fellow

Cockcroft Institute / University of Liverpool

Email: yelong.wei@cockcroft.ac.uk

Outline

- Background
- Modelling & simulations for DLA
- Summary & Outlook

Dielectric Laser Accelerator(DLA) Concept

Key objective:

- Higher gradient
- Lower cost
- More compact
- Lasers: high rep rates, strong field gradients, commercial support
- Dielectrics: higher damage threshold, higher gradients (1-5 GV/m), leverage industrial fabrication processes

Image courtesy CERN

Conventional RF structure

Dielectric Laser microstructures

What am I talking about?

- Various names: "Dielectric Laser Accelerator (DLA)", "Laser Structure Accelerator (LSA)", "Optical Accelerator", "Micro-Accelerator", etc.
- Include: Our DLA concepts operate at optical wavelengths, driven by lasers, and the accelerating fields exist inside of an enclosed structure made of dielectrics, no conducting boundaries.
- Exclude: particle-driven wakefield accelerators, laser plasmas wakefield accelerators, dielectric wakefield accelerator and so on.

Many DLA structures

1-D grating Structure

Silica, λ =800 nm, Ez=700 MV/m

T. Plettner, et al, PRST-AB, 9, 111301 (2006).

2-D Fiber Structures

Silica, $\lambda=1053$ nm, Ez =400 MV/m

B. Cowan, PRST-AB, 6, 101301 (2003).

X. Lin, PRST-AB, 4, 051301 (2001).

3-D Woodpile Structures

Silicon, $\lambda=1550$ nm, Ez=301 MV/m

Z Wu, et al, PRST-AB, 17, 081301 (2014).

B. Cowan, et al, PRST-AB, 11, 011301 (2008).

Other DLA structures

C-M. Chang, O. Solgaard, APPLIED PHYSICS LETTERS **104**, 184102 (2014)

"Buried" phase mask of holes reduces peak fields

B. Naranjo, A. Valloni, S. Putterman, and J. B. Rosenzweig, PRL **109**, 164803 (2012)

Combination of resonant and non-resonant spatial harmonics provides acceleration and focusing.

Milestone DLA experiment for high β electrons

Electron source: 60 MeV; Acceleration gradient can be higher than 250 MeV/m Double grating structure

Another DLA experiment for low β electrons

Electron source: 28 keV

Observed maximum acceleration gradient:

25 MeV/m -- Single grating structure

John Breuer and Peter Hommelhoff, Laser-based acceleration of non-relativistic electrons at a dielectric structure, PRL 111, 134803(2013)

Modelling & Simulation for DLA(1)

- Illuminated by linearly-polarized laser from both sides;
- Each grating pillar acts as an optical phase-delay to generate π -phase shift with respect to the electric field in the adjacent vacuum space;
- Oscillating electric field in the vacuum channel to interact with electrons;

Optimizations for acceleration of high β electrons

- The dielectric material is chosen as silica(SiO2);
- The damage threshold is 1 J/cm² at 100 fs of laser pulse, which is equivalent to peak field of 8.7 GV/m;

 So the maximum achieved acceleration gradient is about

2.3 GV/m= 0.26613*8.7

Laser parameters	
wavelength	1550 nm(erbium fiber)
Pulse energy	10 μJ
Average power	1 kW
Pulse width	100 fs
Repetition rate	1 MHz

Modelling & Simulation for DLA(2)

We also need to optimize the C, H and Δ=A-B to maximize the acceleration efficiency η=G/Ep, for different spatial harmonic, where G is the average acceleration gradient and Ep is the peak electric field in the grating structure

$$\lambda_{\mathbf{p}} = n \beta \lambda$$

n is the numbers of laser cycles per electron passing one grating period, λp is the grating period, λ is the incident laser wavelength, v is the speed of injection electrons, $\beta = v/c$

Optimizations for acceleration of low β electrons

When the injection electron energy is 25 keV (β =0.3), we have three different options to accelerate electrons with this energy:

- 1) Synchronous with first spatial harmonic, n=1
- 2) Synchronous with second spatial harmonic, n=2
- 3) Synchronous with third spatial harmonic, n=3

Synchronous with First Spatial Harmonic (β=0.3,

C=200 nm H=250 nm A/ $\lambda_{p1} = 0.55$ B/ $\lambda_{p1} = 0.45$

Acceleration efficiency η_1 =G/Ep=0.03931, where G is the average acceleration gradient and Ep is the peak electric field in the grating structure

Synchronous with Second Spatial Harmonic (β=0.3, $\lambda_{p2}=930 \text{ nm}$

H = 300 nm

 $B/\lambda p_2 = 0.70$

Acceleration efficiency

 η_2 =G/Ep=0.03010, where G is the average acceleration gradient and Ep is the peak electric field in the grating structure

Synchronous with Third Spatial Harmonic (β=0.3,

A/
$$\lambda$$
p3 = 0.49
B/ λ p3 = 0.51

Acceleration efficiency

 $\eta_3 = G/Ep = 0.02292$, where G is the average acceleration gradient and Ep is the peak electric field in the grating structure

Comparisons

Acceleration Efficiency with a vacuum channel width C=200 nm:

- 1) $A=B=\lambda_p/2$, First spatial structure> third > second
- 2) A≠B, First spatial structure> second > third

Damage threshold for the electric field is $E_{\rm th}$ =8.7 GV/m. When E_p =8.7 GV/m was assumed in the simulation, acceleration gradient for 2nd spatial harmonic can reach up to 260 MV/m when the vacuum channel width C=200 nm and the grating period = 930 nm.

Setup of Multi-stage DLA

This time delay between
Y and Z is:

$$c \Delta t = \lambda_p \tan \theta \qquad (1)$$

 At this time Δt the electrons just travel from M to N:

$$\lambda_{p} = v \Delta t$$
 (2)

Thus we obtain:

$$\beta = v/c = 1/\tan\theta$$
 (3)

Preliminary Analysis of Multi-stage DLA

- A/ λ_p =B/ λ_p =0.5, C=200 nm, which are assumed in the simulation;
- $\lambda_p = n * \beta * \lambda$

- Analysis
- 1) When electron with speed β <0.45, first spatial > third > second;
- 2) $0.45 < \beta < 0.60$, first spatial> second > third;
- 3) $0.60 < \beta < 0.80$, second spatial structure is most efficient;
- 4) $\beta > 0.80$, first spatial structure is most efficient

Summary & Outlook

- \clubsuit Investigation into acceleration of high β electrons in a double grating structure;
- \clubsuit Investigation into acceleration of electrons with β =0.3 in a double grating structure;
- ❖ Did some preliminary research on multi-stage dielectric laser acceleration.
- ☐ Experimental studies at DL with ASTeC;
- ☐ With ULAN/ASTeC: 2D/3D photonic crystal DLA

Thank you!