# **Developments towards Doppler**free in-source laser spectroscopy at ISOLDE RILIS

M. Veinhard, V. Fedosseev, T. Day Goodacre, B. A. Marsh, S. Rothe and K. Wendt









 RILIS : Resonance Ionization Laser Ion Source

II. Motivations and requirements for In-source Doppler-free laser spectroscopy

I. RILIS : Resonance Ionization Laser Ion Source

II. Motivations and requirements for In-source Doppler-free laser spectroscopy

### RILIS: Resonance Ionization Laser Ion Source [1]











### RILIS: Resonance Ionization Laser Ion Source [1]

#### Multi-step resonance photo-absorption

- Unique combination of frequency-tuneable Dye-Ti:Sa system, enabling a wavelength range from 210 to 950 nm
- ➤ 10-30 ns pulses at 10 kHz repetition rate (Sufficient photon flux → 0.1-40 W).
- Broadband laser system with laser-linewidth of 10-20 GHz and narrowband laser system of 1 GHz laser linewidth.
- Enables element selectivity; isomer selectivity in some cases

#### Use of a hot cavity

- Ensure atom confinement between the laser pulses and fast effusion of reaction products
- Leads to a Doppler broadening of the atomic lines, constraining the RILIS system to a bandwidth of few GHz

[1] B. Marsh. Resonance ionization laser ion sources for on-line isotope separators (invited). Review of Scientific Instruments, 85(2), 2014.



I. Principles of RILIS

II. Motivations and requirements for In-source Doppler-free laser spectroscopy

- Principles of in-source resonance ionization spectroscopy
  - ➤ Observation of photo-ions instead of fluorescence photons → more suitable for the study of exotic isotopes with low production rates
  - One of the transition of the ionization scheme is chosen for laser scanning, using a narrow band laser (Spectral resolution limited only by Doppler broadening)

 Principles of in-source resonance ionization spectroscopy: Example spectra [2]





[2] M.D. Seliverstov, et al. Charge radii of odd-A <sup>191–211</sup>Po isotopes. Physics Letters B 719 (2013) 362–366









### Comparison with two photon spectroscopy [3]

$$\omega \left(1 + \frac{\upsilon}{c}\right) + \omega \left(1 - \frac{\upsilon}{c}\right) = 2\omega$$
.  $\rightarrow$  equal and opposite Doppler shift for each beam

Transition from  $3s^23p^2$   $^3P_1 \rightarrow 3s^23p4p$   $3P_2$  in  $^{29}Si$ 





[2] K. Wendt, et al. Hyperfine structure and isotope shift in the  $3s^2 3p^2 ^3P_{0,1,2} \rightarrow 3s^2 3p4p ^3P_{0,1,2}$  transitions in silicon by Doppler-free insource two-photon resonance-ionization spectroscopy. Phys. Rev. A, 88:052510, Nov 2013.









- Could provide on-line, high-resolution experiments with spectral resolution down to several MHz
  - Isotope selectivity
  - High resolution measurements of hyperfine structure and isotope shift
  - Isomer separation
  - Give access to light elements for in-source spectroscopy



Updated plot provided by Bradley Cheal from 2010 review (B. Cheal & K.T. Flanagan J. Phys. G 37 (2010) 113101)





## Requirements

- Simultaneous colinear and anti-colinear laseratom interaction
- Narrow linewidth, high power, tuneable laser system
- Compatibility with RILIS laser system requires pulsed operation (30 ns, 10kHz rep rate)

I. Principles of RILIS

II. Motivations and requirements for In-source Doppler-free laser spectroscopy





## Conclusions and forthcoming work

- Doppler-free two photon spectroscopy is a promising technique for high resolution spectroscopy inside hot cavity ion sources
- An optimal laser setup is currently under development, the narrowband Ti:Sa is lasing at 80 mW (at 760 nm) and needs to be optimized.
- An element with convenient two photon transition will be chosen to test the technique and the setup









Thank you!