First results on Ge resonant laser photoionization in a hollow cathode lamp

Emilio Mariotti DSFTA – UniSiena (on behalf of the SPES collaboration)

La3Net Conference – Son Caliu, 25 March 2015

SPES Selective Production of Exotic Species

Emilio Mariotti

Alberto Andrighetto, Daniele Scarpa

Piergiorgio Nicolosi

Alessandra Tomaselli

Università degli Studi di Padova

Uni

Università di Pavia

Anatoly Barzach, Dimitry Fedorov

NATIONAL RESEARCH CENTRE "KURCHATOV INSTITUTE"

Laboratori Nazionali di Legnaro

The "SPES" location (?)

The "SPES" (real) location

The INFN Legnaro Laboratory

Nuclear Physics - Fundamental Interactions – Interdisciplinary Physics - Detector Techniques - Accelerator Design & Technology - Superconductivity

SPES: The "hope" of LNL

SPES is:

- 1) A second generation ISOL facility (for neutron-rich ion beams)
- 2) An interdisciplinary research center (for p,n applications)

Research and Production of **Radio-Isotopes for Nuclear Medicine**

Accelerator based neutron source (Proton and Neutron Facility for Applied Physics)

The Spes layout

The Spes building yesterday

The SPES main apparatus

Driver:

<u>'Commercial'</u> cyclotron

RIB manipulation stage

- Mass Separator (WF)
- Beam Couler
 - HRMS
- Charge Breeder
 - RFQ

Production Target:

<u>NEW CONCEPT</u> (Multi-foil UCx target)

Target-Ion Source Complex:

- optimized for 8kW beam powerEproton = 40 MeV for RIB
 - - 10^13 fission/s.

Post Accelerator:

Alpi existing complex

SPES Elements production

		surface ionization mechanism															
		laser ionization mechanism															
1 H		electron impact ionization mechanism															² He
3 Li	4 Be			<u>not e</u>	extrac	<u>ted</u>						5 B	° C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg											13 Al	¹⁴ Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	²⁴ Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	³⁴ Se	³⁵ Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	⁵⁴ Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	85 At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	89 Ac	104 Un q	105 Unp	106 Unh	107 Uns	108 Un 0	¹⁰⁹ Une	110 Un n								

The LASER Laboratories

Offline: Spectroscopy

3 Dye Laser @ 10 Hz rep. rate

Diagnostic tools:

- Monocromator
- HCL
- ToF Mass Spectrometer

Online (SS laser): RIB prod.

Diagnostic tools:

- Λ-meter
- Alignments System
- lon-Beam

The LASER Group

Spectroscopy

- Study of different elements of interest
- Offline-lab with 10Hz dye laser system
- HCL
- ToF-MS

New SS laser:

- Defining RIB production laser requirements
- 10 kHz TiSa laser
- New laser lab requirements

Transport:

- Taking care of 20 m laser beam delivery
- Study of beam positioning instability compensation

Detection scheme

Hollow cathode lamp (gas discharge) Optogalvanic spectroscopy

Designed to provide spectral emission of different elements.

- Commercial for Opto Galvanic application
- Inexpensive
- Available for almost the whole periodic table
- Electrical noise is very small, comparable with the level of shot noise
- Easy setup

$$E_i \to E_k \qquad \Delta n_i = n_{i0} - n_{iI}$$

$$\Delta U = R\Delta I = a[\Delta n_i IP(E_i) - \Delta n_k IP(E_k)]$$

 $A(E_i) + e^- \rightarrow A^+ + 2e \quad A(E_i) + B^* \rightarrow A^+ + B + e^-$

$$A(E_i) + h\nu \to A^+ + e^-$$

Opto Galvanic Signals

SLOW Opto-Galvanic Signal:

The absorption of laser radiation in the discharge results in a change in the steady-state population of bound atomic or molecular levels. Since different levels will have different ionization cross-sections or ionization probabilities, a perturbation to the steadystate situation results in a net change in the discharge current or equivalently a change in the discharge impedance. The electric signal detected is the slow signal, negative and lasting μ s.

FAST Opto-Galvanic Signal:

It is a direct ionization process during laser pulse. The laser radiation brings the selectively excited atoms directly to ionization. Electrons are immediately available as carriers. This effect produces a fast electric signal. It was

This effect produces a fast electric signal. It was found (Broglia et al 1983 [3]) that this fast signal follows the laser pulse temporal behavior (ns).

Germanium

First element selected to perform resonant ionization:

Experimental Setup

Pump 1:

- 355 nm pump laser
- 100 mJ 20 nsec laser pulse
- 10 Hz rep rate

Pump 2:

- 532 nm pump laser
- 300 mJ 20 nsec laser pulse
- 10 Hz rep rate

Dye 1:

- FL2002 Lambda Physik
- Coumarin 540
- 4 to 10 μJ per pulse

Dye 2:

- TDL50 Quantel
- Rodhamine 6G
- 50 μJ per pulse

Results Multiple ionization schemes tested:

 $265\,156\,\text{nm}\,\pm\,561$

Results

Wavelength Scans along ionization paths:

"Slow signal" of ionization scan with the fixed at 303 nm first step

Scan across 566 nm resonance was performed with TDL 50

Conclusions

Since end of 2014:

- New SPES laser laboratory in LNL operational
- First results on Resonant Laser Ionization on Germanium
- Proof HCL OGE signals valid technique to perform laser spectroscopy

Development for SPES laser lab in 2015:

- Test resonant ionization with HCL for other elements (Sn; Ga; As)
- Setting up an home made ToF-MS adding MCP's
- Setting up a 'laser front end' for LIS studies for SPES project
- Purchase of new Solid State Laser System for online lab