

Dr. Lee Jones Senior Accelerator Physicist

Accelerator Science and Technology Centre STFC Daresbury Laboratory

Photoinjectors: A General Overview

Over the years

The synchrotron

The cyclotron

EMMA: The world's first non-scaling fixed-field alternating gradient accelerator (nsFFAG)

ALICE: Europe's first energy-recovery linear accelerator (ERL)

Single-pass machine → dynamic aperture does not define beam brightness

Nominal Gun Energy: 350 keV Injector Energy: 8.35 MeV Final Beam Energy: 35 MeV

RF Frequency: 1.3 GHz Rep. Rate: 81.25 MHz Bunch Charge: 80 pC Average Current: 6.5 mA

Ultimate beam brightness is now limited by photoinjector performance. Successful FEL operation requires ultra-short high-brightness electron bunches. Key parameters are:

- the photocathode surface electric field (E_{cath})
- the Mean Transverse Energy (MTE) of emitted photoelectrons
 - Difficult to measure subject of much research

Joseph Liouville

$$B_{max} = \frac{\epsilon_0 mc^2}{2\pi} \frac{E_{cath}}{MTE}$$

$$\epsilon_{nxy,\text{th}} = \sigma_{xy} \sqrt{\frac{\text{MTE}}{mc^2}}$$

This means that Liouville's theorem applies from the photocathode surface

- What is a an electron gun?
 - Combines electron source with beam conditioning and a high voltage for acceleration
- Possible electron gun technologies:
 - Hot filament
 - Angelestron gun? No

A high-performance electron machine gun!!!

- Plasmonic surfaces & structures
- Photoinjector
 - Photocathode
 - Illumination by pulsed laser
 - Emittance compensation + accelerating stage(s)

Two general classes of photocathode electron sources have evolved to meet this challenge:

These differ primarily in terms of

- Cost DC / RF / SRF
- Repetition rate

DC Gun RF Gun

DC/RF Gun performance FOM:

$\varepsilon_{n,rms} =$	1	$2qE_i$
	$\frac{1}{2}$	$\overline{3\pi\varepsilon_0E_{cath}mc^2}$

q = bunch charge [C]

 E_i = initial energy [eV]

Field strength, E_{cath}	Technology	0.01 nC	0.1 nC	1.0 nC
10 MV/m	DC gun	0.11	0.34	1.08
20 MV/m	VHF gun	0.08	0.24	0.77
50 MV/m	L-band gun	0.05	0.15	0.48
100 MV/m	S-band gun	0.03	0.11	0.34

The photocathode family tree

DC Guns: Technical challenges

- Power supply ripple
- Vacuum requirements dependent on cathode
- Back-ion bombardment
- Dark current / field emission
- HV Conditioning use of He/Kr during processing
- Insulating ceramic electrical and mechanical loading

DC Guns: Technical challenges Power supply ripple

PSU ripple drives fluctuations in beam emittance, bunch shape, bunch arrival time, and average energy after full acceleration.

Phase change at a distance L away from the gun caused by gun voltage variation:

$$\Delta \varphi = 2\pi f \frac{L}{c} \frac{\gamma - 1}{(\gamma \beta)^3} \frac{\Delta V_{gun}}{V_{gun}}$$

where φ is in radians, f is the RF frequency, c is the speed of light, and $\Delta V_{gun}/V_{gun}$ is relative ripple of the gun voltage.

In terms of RF phase, variations of \pm 1° are tolerable for low emittance beams.

At 1.3 GHz, \pm 1° in phase is approximately \pm 2 ps in arrival time, corresponding to a shift of \pm 450 V (0.18%) 1 metre from a 250 kV gun.

The voltage ripple needs to be specified over the **frequency ranges present in the power supply**, typically up to 60 kHz (or more) for switching power supplies.

DC Guns: Technical challenges Vacuum considerations

- Much easier to pump a DC gun chamber than an RF gun
- Photocathodes used in a DC gun generally have very high vacuum requirements
 - Requires use of high-quality materials and good engineering practices
 - Pumping to XHV achieved through use of large ion pumps and NEG coatings,
 and baking for a long time
- Vacuum degraded by gun operations, and in-situ photocathode preparation
 - Maintenance of good gun vacuum requires an external photocathode preparation facility (PPF)
- Poor vacuum leads to contamination of the photocathode, and thereby a drop in the Quantum Efficiency (*Q.E.*)
- Poor vacuum also increases the back-ion bombardment rate, reducing photocathode lifetime and the maximum achievable Q.E.

DC Guns: Technical challenges **Back-ion bombardment**

- Back-ion bombardment is a major challenge in DC guns
- It degrades Q.E. and damages the cathode surface
- Reduced by good vacuum, but fundamentally un-avoidable
- Worst effects occur within a few mm of the photocathode surface
- Positive bias on the anode suppresses back-ions from downstream

Courtesy Joe Grames, JLab

The use of a PPF confers several operational advantages:

- Improved environment for photocathode activation
- Reduced accelerator down-time for photocathode activation, permitting operations with high bunch charge
- Improved gun operating environment
 - Better gun vacuum
 - Reduces contamination of the gun HV electrodes
- Permits accelerator operation with different types of photocathodes

DC Guns: Technical challenges

Photocathode Preparation Facility for the ALICE ERL DC photocathode gun

DC Guns: Technical challenges

High voltage conditioning

- Potentially dangerous, but essential for stable operation of a DC gun
- HV electrodes must be 'trained' to support high voltages
- Conditioning necessary to desired operating voltage + 10% as a minimum
- Use of Kr during HV conditioning is beneficial for new HV electrodes

Right: Measurements of field emission between two single crystal niobium electrodes, polished with BCP process and HV conditioned using Kr.

Courtesy Matt Poelker, JLab

DC Guns: Technical challenges **High voltage conditioning**

- Potentially dangerous, but essential for stable operation of a DC gun
- HV electrodes must be 'trained' to support high voltages
- Conditioning necessary to desired operating voltage + 10 % as a minimum
- Use of Kr during HV conditioning is beneficial for new HV electrodes
- Can be very time-consuming

DC Guns: Technical challenges

Dark current & Field emission

- Some dark current is un-avoidable in any photocathode gun
 - Intrinsic property of the photocathode, affected by photocathode choice

Measurements show that Cu and Cs₂Te have similar levels of dark current emission, but Cs₃Sb exhibits much higher dark current levels.

DC Guns: Technical challenges

Dark current & Field emission

- Some dark current is un-avoidable in any photocathode gun
 - Intrinsic property of the photocathode, affected by photocathode choice
- Low-level field emission is also unavoidable, but must be managed
 - Careful design of HV surfaces and maximum electric field strength
 - Clean conditions during assembly
 - Effective HV conditioning
- Intense or sudden field emission can be catastrophic
 - Tracking along ceramic short circuit
 - Punch-through causing a leak
- Biased (floating) anode plate permits dark current measurements

DC Guns: Technical challenges Insulating ceramic

- Insulating ceramic must withstand extreme DC voltage and a large mechanical load whilst maintaining large pressure difference
- It should not be a perfect insulator !!!
- Surface coating or bulk doping for high resistivity

DC Guns: Technical challenges Insulating ceramic

20

- Insulating ceramic must withstand extreme DC voltage and a large mechanical load whilst maintaining large pressure difference
- It should not be a perfect insulator !!!
- Surface coating or bulk doping for high resistivity

DC Guns: Technical challenges **Insulating ceramic**

- Insulating ceramic must withstand extreme DC voltage and a large mechanical load whilst maintaining large pressure difference
- It should not be a perfect insulator !!!

Segmented ceramic with guard rings

500 kV Photocathode gun at JAEA

RF Guns: Technical challenges **Some common ground**

RF guns share some of the technical challenges described for DC guns:

- Photocathode integration
 - Vacuum environment & electric field disruption
 - Different photocathode 'standards'
 - Collaborations difficult vacuum suitcases needed
- DC Ripple / effective RF ripple amplitude and timing
 - Cavity temperature stability
- Symmetric and uniform electric field
- Dark current / field emission
- Synchronisation of the photoinjector drive laser to the RF via a master clock
 - Use of optical clocks for distributed timing Holgar Schlarb, DESY
 - Problems increase with the size of the facility

- Arguably the most critical factor in a photocathode/photoinjector gun
- Very difficult to measure accurately !!!
 - Amplitude noise indistinguishable from phase noise
- Best-practice for phase noise measurements in lasers establish by Scott et. al: IEEE J. Sel. Top. Quan. Elec.; 7(4), 641, 2001

Measurements on ALICE: Initially, the noise floor of the HP3047A system was measured by feeding the same signal from a *Wenzel* low-noise 81.25 MHz RF oscillator into both inputs of the low-noise mixer in quadrature. The laser was then synchronised to the oscillator, and the laser output fed back to a low-noise mixer via a fast photodiode.

Courtesy Graeme Hirst, STFC

DC & RF Guns: Drive Lasers Extinction ratio

Extinction ratio is *critical* in a non-CW machine

DC & RF Guns: Drive Lasers Extinction ratio

Pulse chopping carried out at long λs , then frequency 2ω or 3ω applied

DC & RF Guns: Drive Lasers

Extinction ratio

Pulse chopping carried out at long λs , then frequency 2ω or 3ω applied

DC & RF Guns: Drive Lasers

Longitudinal & transverse shaping

- The 3D intensity distribution of the laser determines the 3D distribution of the photoemitted electrons
- The initial electron distribution has a significant effect on emittance in a space-charge-dominated beam
- Longitudinal and transverse laser spatial profiling can minimise emittance

- Four YVO₄ crystals used in series to 'stack' copies of the incoming short laser pulse
- Cross-correlation measurement used to monitor overall pulse length

DC & RF Guns: Drive Lasers **Longitudinal & transverse shaping**

A non-uniform laser beam generates a nonuniform electron beam which expands at a rate linked to the plasma period.

The best electron beam is achieved with a truncated Gaussian transverse laser beam.

Emittance tests on various transverse laser beam profiles

PRSTAB 5, 094203 (2002)

DC & RF Guns: Drive Lasers Good practice

- Off-centre illumination to avoid worst effects of back-ion bombardment
 - Cornell claim no detriment to emittance for a 0 4 mm laser offset
- Use of a virtual cathode
 - Concept inspired by DESY Zeuthen
 - o Splits off small fraction of drive laser beam and images this on a screen

The Cornell 1.3 GHz, 1 ps rod fibre amplifier photoinjector drive laser

- 167 W IR laser power at 1.3 GHz (fibre amplifier)
- 124 W green laser power at 1.3 GHz
- 800 fs micropulses, stretchable to 80 ps 'stacked'
- Further power increases possible

"Enabling next-generation high-current X-ray sources"

The Cornell ERL Injector – DC Gun

Parameter	Value
Frequency	1300 MHz
Charge per bunch	77 pC
Average current	100 mA
Normalized emittance	≤0.3 µm
Bunch duration	2–3 ps rms
Beam energy	4–15 MeV

- Demonstrated high-current operations at 65 mA using a Na₂KSb photocathode (2.6 day lifetime)
- Brief operation at 75 mA World Record
- Low emittance beams (near thermal threshold)
- Extremely high DC voltages are not necessary

- Gun originally designed for 750 kV operation
- Cathode field is crucial
- Translatable anode to tailor the cathode field strength

Small gap, 20 mm

Large gap, 50 mm

The Cornell ERL Injector – DC Gun

Parameter	Value
Frequency	1300 MHz
Charge per bunch	77 pC
Average current	100 mA
Normalized emittance	≤0.3 µm
Bunch duration	2–3 ps rms
Beam energy	4–15 MeV

- Demonstrated high-current operations at 65 mA using a Na₂KSb photocathode (2.6 day lifetime)
- Brief operation at 75 mA World Record
- Low emittance beams (near thermal threshold)
- Extremely high DC voltages are not necessary
- Simulations + optimisations match experiments
- Halo/beam loss can be maintained below
 1 part in 10⁷ to 10⁸
- Photocathodes are still the key challenge

Thank you for listening ©

Credits to colleagues for material used in this presentation:

Dr. Bruce Dunham, Cornell Dr. Graeme Hirst, STFC (ret)

Dr. Joe Grames, JLab Dr. Boris Militsyn, STFC

Dr. Carlos Hernandez-Garcia, JLab Dr. Noboyuki Nishimori, JAEA

Dr. Christoph Hessler, CERN Dr. Matt Poelker, JLab

Preliminary emittance measurements

Y. Honda, T. Miyajima, et al., "Transverse Beam Performance Measurement at compact-ERL Injector", 10th Meeting of Particle Accelerator Society of Japan, SUP011, (2013).

Thermal emittance at the gun at E=390keV

ut Jefferson Lab Beam profile on YAG screen

Emittance at the injector at E=5MeV

Phase space distribution measured with a slit scan

DC Guns: Drive Lasers

Polarised electrons

- Polarised emission from the $4s_{1/2}$ band when illuminating GaAs (100)
- $\lambda \sim 800 \,\text{nm}$ RCP generates $\Delta m_i = +1$ and LCP generates $\Delta m_i = -1$
- Clebsch-Gordan coefficients give likelihood of transition
- Transitions from $m_i = -3/2$ state 3 times more likely than those from $m_i = -1/2$ state

Feedback Stabilization

Result: Improvement of intensity stability (laser beam) and charge stability (electron beam) by a factor of 3 down to 0.4% rms and 1% rms