

Accelerator Timing Monitor with Femtosecond Precision

R. Pan, T. Thakker, A. Kalinin, S. P. Jamison

STFC, ASTeC

Outline

- Introduction
- RF pick-up based Bunch Arrival-time Monitor (BAM)
- All optical BAM
- Summary

Introduction

CLARA:

Compact Linear Accelerator for Research and Applications

VELA:

Versatile Electron Linear Accelerator

Overview of beam diagnostics on CLARA

Bunch Arrival-time Monitor (BAM):

- Improve understanding of the beam dynamics
- Monitor synchronisation points

	VELA	CLARA
Bunch charge	10-250 pC	20-250 pC
Bunch length	1-10 ps rms	25-250-850 fs rms
Energy	4-6 MeV	250 MeV
Bunch repetition rate	1-10 Hz (1-400 Hz in future)	1-100 Hz

Parameters

Bunch charge = 250 pC Bunch length (FWHM) = 1 ps

Laser wavelength = 1550 nm Laser pulse width (FWHM) = 200 fs Laser average power at 250 MHz = 32 mW

Detection module: 23 µV resolution Single pulse detection

electron to photon photon to electron

RF EO Detector

pickup modulator

BAM will be tested in June this year on VELA accelerator

Can the RF pickup be replaced by EO crystal?

Electro-optic bunch profile measurements

EOSD scheme bunch profile monitor on CALIFES at CERN

Reference for EO BAM:

Clocking Femtosecond X Rays
A. L. Cavalieri and et al.
PRL 94, 114801 (2005)

Electro-optic bunch arrival time measurement at FLASH

V. Arsov and et al. THPC152, Proceedings of EPAC08

Require:

Real time data processing
Zero crossing point
Centre of mass
Resolution < 5 fs

Electro-Optic Spectra Decoding system

Bunch arrival-time modulates laser intensity

Expected resolution

Numbers for example:

Laser wavelength = 1550 nm Laser pulse energy in = 150 pJ

Laser pulse : 200 fs chirp to 5 ps $\,$

ZnTe = 1 mm

PD conversion = 1 A/W

Bunch shape: 1 ps FWHM Gaussian

Bunch charge : 0.2 nC Beam energy: 200 MeV

Positive:

---- Simple setup, chirp done by fibre

---- Possible to be switched to a bunch profile monitor

---- Sensitivity/scanning window adjustable

---- ps range effective window

Negative:

---- High quality laser profile

---- Noise dependent

---- Bunch profile dependent

Peak sensitivity = 20 mV/ps Window = ~1 ps

Resolution improvement: Balance Detection

Phase mismatching leads to a signal scanning in a single shot

ZnTe thickness: 2 mm

Pulses propagation in ZnTe crystal

EO Sampling:

$$\Delta \Phi = \frac{\omega x}{c n_{opt}} E_{eff}^{THz}(\tau)$$

$$E_{eff}^{THz}(\tau) = \mathcal{F}^{-1} \big\{ \tilde{\chi}^{(2)}(\Omega) \cdot \tilde{\xi}(\Omega) \cdot \tilde{E}^{THz}(\Omega) \big\}$$

Expected resolution

Positive:

- ---- No chirp required
- ---- Balance detection increases sensitivity
- ---- Zero crossing = centre of mass

Negative:

- ---- More complex
- ---- shorter effective window

Numbers for example:

Laser wavelength = 1550 nm Laser pulse energy in = 150 pJ

Laser pulse: 200 fs

ZnTe = 2 mm

PD conversion = 1 A/W

Bunch shape: 1 ps FWHM Gaussian

Bunch charge: 0.2 nC Beam energy: 200 MeV Peak sensitivity = 400 mV/ps Window = ~ 500 fs

Noise

laser amplitude fluctuation ratio 3%

Outlook

Build fibre link from lab to VELA, including dispersion compensation

Noise sources and control need to be studied

Principle test in lab

Summary

A RF pickup based BAM is being installing on VELA accelerator at Daresbury. Will be tested in June.

Two all optic based BAMs are demonstrated and can potentially achieve a resolution in femtosecond level.

The balance detection based BAM has 400 mV/ps peak sensitivity. Less sensitive to bunch profile and laser amplitude fluctuation.

Acknowledgments

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289191.

Thanks for your attention!

