Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

V. Fadeyev SCIPP / UCSC

On behalf of Strip CMOS Collaboration:

A. Affolder⁰, K.Arndt¹, R. Bates², A. Blue², D. Bortoletto¹, C. Buttar², P. Caragiulo³, D. Das⁴, J. Dopke⁴, A. Dragone³, F. Ehrler⁵, V. Fadeyev⁶, Z Galloway⁶, H. Grabas⁶, I. M. Gregor⁷, P. Grenier³, A. Grillo⁶, L. B. A. Hommels⁸, T. Huffman¹, J. John¹, K. Kanisauskas^{1,2}, C. Kenney³, J. Kramberger⁹, Z. Liang⁶, I. Mandic⁹, D. Maneuski², S. McMahon^{1,4}, M. Mikuz^{9,10}, D. Muenstermann¹¹, R. Nickerson¹, I. Peric⁵, P. Phillips^{1,4}, R. Plackett¹, F. Rubbo³, J. Segal³, A. Seiden⁶, I. Shipsey¹, W. Song¹⁴, M. Stanitzki⁷, D. Su³, C. Tamma³, R. Turchetta⁴, L. Vigani¹, J. Volk⁶, R. Wang¹², M. Warren¹³, F. Wilson⁴, S. Worm⁴, Q. Xiu¹⁴, J. Zhang¹², H. Zhu¹⁴

¹²Argonne National Laboratory, ⁸Cambridge University, ⁷Deutsches Elektronen-Synchrotron, ¹⁴Institute of High Energy Physics, Beijing, ⁹Jožef Stefan Institute, Ljubljana, Slovenia, ⁵Karlsruhe Institute of Technology¹University of Oxford, ⁴Rutherford Appleton Laboratory, Didcot, United Kingdom, ³SLAC National Accelerator Laboratory, ²SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom, ¹¹Universite de Geneve, ⁶University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP), Santa Cruz, CA, United States of America, ¹³University College, London, ⁰University of Liverpool, ¹⁰University of Ljubljana, Slovenia.

HV/HR-CMOS for ATLAS strips

Outline

- Baseline ATLAS strips
- o What is HV/HR CMOS
- Strip CMOS project
- o Test Results
- o Further work

Baseline ATLAS Strip Tracker

Baseline ATLAS Strip Module

A barrel module from last round of prototyping (with ABCN-250 chips).

Traditional heterogeneous architecture:

- Separate sensors and readout ASICs.
- Precursor steps:
 - ASIC testing
 - Hybrid assembly and testing
 - Sensor testing.

Differences with current ATLAS SCT modules:

- n-on-p sensor as more rad-hard
- Single-sided module
- Single large sensor
- Direct gluing of hybrid on sensor
- More channels/module (and more modules in production)

Next round of prototyping is on-going. It features new ASICs, ABC-130, with x2 channels/chip => half the chips and less hybrid area/material.

What is HV/HR-CMOS

High-Voltage CMOS technology is a variation of standard CMOS process that is frequently used for power devices. Allows for higher-resistivity substrates and ~100 V bias.

High-Resistivity CMOS was developed for imaging applications. Features high-resistivity (1000 Ω cm) thin epi layers one can take advantage of.

Bottom line:

- higher V(bias) and ρ than for commercial CMOS, although not as high as for what HEP is used to.
- Monolithic technology with analog FE and some digital circuits moved to "sensor"

CMOS electronics placed inside the diode (inside the n-well)

Projects within ATLAS

There are two main projects within ATLAS evaluating HV/HR CMOS technologies:

- Pixel demonstrator project {talks by B. Ristic, T. Hirono, Y. Zhang on Sat}
- Evaluation for strip sensor {this talk}

ATLAS agreed to explore the possible use of the technology for strip region, with 3-year plan:

- Year 1: Characterization of basic sensor/electronics properties and architecture
- Year 2: Fabricating and evaluating a large-scale device {we are here}
- Year 3: Full prototypes of sensors and ABCN'.

Possible improvements compared to the baseline:

- Cost savings due to x2 less area and less cost per area.
- Faster construction due to fewer wirebonds.
- Less material in the tracker.

CMOS Strips Introduction

Main motivations and parameters for what could work:

- Short time for development => match the architecture/design of the baseline program to the extend possible {staves/modules/sensors}
- Significantly smaller depletion region => "strip" is composed from pixels with individual readout {pixel detector with strip readout architecture}
- Analog FE + comparators on the sensors, with synchronous fast buses transferring data to digital chip with pipelining, and triggering.
- Single bunch crossing timing resolution.
- Similar readout chain: sensor -> ABCN' -> HCC'. But longer data packets due to longitudinal information.
- Looking at ~40 µm pitch and 720 µm length of pixels (better than 74.5 um baseline pitch and 40 mrad crossing angle).
- Max reticle sizes are ~2x2 cm² => Looking into rows of 4-5 chips as basic units (yield performance is critical here).
- R&D with two foundries is being pursued: AMS and TJ. (Pixel efforts have more, e.g. L-foundry.)

HVStripV1

The chip contains:

- - There are discriminators and a digital readout scheme.
 - There is feedback variation in amplifier feedback:
 - o std linear transistors
 - o Enclosed transistor
- Pixel test structures with analogue readout.
- Three MOSFET structures (NMOS-linear, NMOSenclosed and PMOS-linear) with drain connections.

CHESS-1-AMS

Same strategy of implementing amplifiers inside the collecting n-well was followed as for HVStripV1.

Design rules for 120 V bias were used.

The chip contains:

- Passive pixel structures Ο
 - Length between 100 and 800 µm. 0
 - 30% and 50% active area fractions. Ο
 - Mostly with guard rings; 1 structure without Ο guard rings.
 - One structure near the ends for edge-TCT study. Ο
 - One large array of $2 \times 2 \text{ mm}^2$. Ο
- Active pixel structures. Ο
- Isolated amplifiers. Ο
- Transistors, Rs and C. \cap

HV/HR-CMOS for ATLAS strips

HSTD10, Xi'an, 2015-09-27

CHESS-1-TJ

TJ HR-CMOS 180 nm features a high-resistivity epi layer grown on a substrate. The collecting wells are n-type and the epi is p-type.

Design variations:

- o p- and n- type substrates are being investigated.
- $\circ~$ Epi thickness varies between 5 μm and 25 $\mu m.$
- Number and topology of the collecting n-wells.

The electronics design features the amplifier designed in the middle of the pixel area, separated from the collecting n-wells in the corners \rightarrow small values of input capacitance.

The chip contains:

- Passive pixel arrays
- o Active pixel arrays
- o Transistor test structures

Edge-TCT Measurements

Insight into fields and depletion Specialized edge structure.

See initial growth of depletion with fluence (for CHESS-1-AMS chip with default ρ = 20 Ω cm).

• signal to high voltage and readout (via Bias-T)

HV/HR-CMOS for ATI

Edge-TCT, Cont

Edge-TCT scan of depth and pixel length:

• Initial gaps of acceptance/signal between the pixel n-wells

• Disappear with fluence, consistent with higher depletion (Should not be a problem for initial resistivity significantly higher than the default 20 Ω cm)

Charge Collection

CCE studies on a large passive array as a function of neutron fluence:

- 1. Initial drop of signal due to reduction of diffusion contribution
- 2. Increase of signal due to larger depletion depth (acceptor removal)
- 3. Decrease of signal due to trapping.

Passive Pixel Properties

We've measured several properties of passive pixels:

- Capacitances
- Inter-pixel isolation:
 - very high, even without guard rings
- Breakdown voltages:
 - Typically stay above 120 V design rule
 - o Doesn't grow with fluence
 - Early breakdown for 30% active area fraction for gamma-irradiated devices

Cell capacitance simulations			Cell capacitance measurements			
length (um) 60)V 12	20V	length (um)	60V	12	20V
100	6.29E-14	5.63E-14	100	D 1E	E-13	0.7E-13
200	1.17E-13	1.05E-13	200	D 2E	E-13	1.7E-13
400	2.27E-13	2.02E-13	400	D 2.5E	E-13	
800	4.45E-13	3.97E-13	800	0 4.5E	E-13	

100µm x 45µm pixel 50% diode fraction

Transistors

Transistors have been looked as a function of ionizing dose (with gammas). As expected, the enclosed transistors are much more immune to radiation.

Transistor performance/simulation comparison looks good pre-rad(backup)

Amplifier Noise

Amplifier noise was studied as a function of TID. There is a peak at ~5 Mrad, that deserves further attention.

R. Eber (KIT)

Amplifier Timing Properties

SCIPP

We looked at amplifier timing properties:

rise time, jitter, pulse width:

- Rise time < 25 ns
- For signal >= 1500 e- the jitter is < 2 ns (sigma)
- Signal width depends on the signal and threshold. Expected to be up to few 100 ns.

→ Amplifier performance is described in more details in Zhijun Liang's poster "Study of built-in amplifier performance on HV-CMOS sensor for ATLAS Phase-II strip tracker upgrade" HSTD10, Xi'an, 2015-09-27

Optimal Resistivity

In HV-CMOS, we have worked with 20 Ω cm resistivity so far. This is very far from the standard (well studied) > 3000 Ω cm values.

Our projections indicate optimal region between 80 and 600 Ω cm based on charge collection estimates and field properties with top-level biasing. Of course, this needs to be studied, which is one of the goals for CHESS-2-AMS.

S/N

The most direct inference in the S/N was obtained with Fe-55 measurements on HVStripV1. The 1600 e- signal is similar to th minimum of 1500 e- we expect for 20 Ω cm material.

We see indications of S/N of 13 for noise of ~100 e-.

There are expectations of:

- Amplifier noise growth by x3 with dose.
- Signal grown by x3 with higher initial resistivity.
- => S/N of 13 may be a realistic factor unless we see common-mode noise.

Further active pixels study

There are further on-going studies of active pixel response and properties. Of particular interest is a better evaluation of S/N with MIP level signals.

CHESS1: Top-side laser scan of 1 pixel composed of 8 n-wells.

- \rightarrow Clearly see individual n-wells (there is a metal in-between).
- Last well has less signal due to metal in the \rightarrow amplifier circuit.

HVStripV1: Pre-rad and post-rad (1.23e15 neq/cm²) MIP spectra for enclosed transistor design.

- \rightarrow There is a clear signal, although with higher threshold after irradiation.
- Higher post-rad signal, consistent with other \rightarrow studies.

20000

25000

Large-scale chips

- Current design efforts aim to fabricate large-area (full reticle) chips:
- Readout architecture capable of processing large number of channels with single-bunch timing resolution.
- High-speed I/O bus streaming hit information in a synchronous way from a large pixel area. Small number of I/O channels to help with the wire bonding as the limiting factor on the construction speed.
- To test for possible correlated noise effects.
- To investigate higher substrate resistivities (HV) and epi thicknesses (HR) as a boost for S/N.

- Passive pixels
- Edge-TCT structure
- Large passive array
- o **Transitors**
- o LVDS transciever
- o HV switch

The designs are well progressed. Had 2 design reviews (AMS version).

Test structures space

AMS: SLAC, UCSC, KIT TJ: RAL

Conclusions

HV/HR-CMOS technologies are a very attractive form of monolithic sensors.

ATLAS commenced R&D efforts to evaluate them for tracking.

1st year of investigation yielded promising results and better understanding of essential technology features:

- Depletion and CCE for default resistivity
- Passive pixel properties
- Transistor and amplifier radiation resistance
- o Timing properties
- Assessment of active pixel performance

Major goals for the 2nd year are design, fabrication and testing of large-area devices. The chip designs are well underway.

Backup

Zoom in one N-well

• Very good uniformity inside N-well

MIPS

Linear Trans. Pixel

Enclosed Trans. Pixel

- → MIPS signal clearly observed after irradiation
 - Noise increase requires higher scope trigger threshold
- MIP spectra were obtained at several bias voltages before annealing
- The position of the peak after irradiation for linear pixel is higher
 - Consistent with seeing improved signal performance

The Properties of a CMOS Strip outer tracker

Parameter	Planar Sensor	StripCMOS Sensor	
r-φ resolution	20 μm – 23 μm	11 μm	
z-resolution	850 μm	280 μm	
Two hit resolution in r-φ	160 μm-240 μm	80 μm	
z-element length	2.5 cm	720 μm (2.4 cm / strip)	
Fraction of two hit clusters	15% - 20%	2%-3%	
Geometry inefficiency on stave	~0.7%	~1%	
Radiation Lengths per stave	1.8%	1%	
Insensitive crossings after a hit	1 BC	0.3 BC (1/32 of strip is dead	
		for 10 bunch crossings)	
Number of Signal Wire bonds	O(5100)	O(1100)	

Planar values are mostly measured or engineering values

StripCMOS values are estimates – part of the R&D programme

These strip sensors are pixel-like $i\eta_{H}$ resolution at 40x720 μ m.

CHESS2 Specifications

	Specs	Comments	
Substrate resistivity	20 Ω cm to 1000 Ω cm	Minimal MIP From 1500-4000e-	
Substrate high voltage bias	120V	40% more charge vs 60V	
Pixel size	40μm x ~800μm	400fF det. capacitance	
Number of pixel per strip	32		
Number of strips	128	Factor ~2 improvement in r- ϕ resol.	
Timing resolution	25ns		
Maximum number of hits per strip	1 + flag	Flag = more pixels hit	
Maximum number of hits per 128 strips	8		
Readout speed	320MHz		
Additional constraint	Rad-hard design	Periphery: inactive area - shorter strips	

X-Ray Measurements (3)

- Mo and Ag spectra were acquired for (5,0) and (12,0) respectively at -60V bias
- Mo K_α≈17.5 keV and Ag K_α≈22keV lines correspond to ≈4860e⁻ and ≈6100e⁻
- The Gaussian fit was done in order to extract gain values (mV/fC) for (5,0)

Charge Collection, Pre-rad

Consistent pre-rad measurements on two different AMS-350 chips. Significant signal at V(bias) = 0 V indicates the presence of signal from diffusion, even at 25 ns shaping time.

Signal Response Uniformity

Note that 1st 8 pixels have different gain due to linear transistors used.

Chip 3 Analog Response

HV/HR-CMOS for ATLAS strips

I-V measurement in gamma irradiated CMOS chip

- No break down in pixel array with 50% N-well fraction
- break-down like behavior in part of the pixels with 30% N-well fraction
- Perform two test in one of 30% N-well fraction pixel
 - Break down in the first scan at about 70V.
 - Leakage current increase by order of magnitude
 - The leakage current remain high after the first test.

Central pixel IV

Design of pixel in CHESS1 chip

- Two design rule in AMS HV-CMOS technology : 60V and 120V
- pixel array layout in CHESS1 chip follows the 120V design rule

I-V measurement result

- Can Biased up to 120V without breakdown
- Low leakage current (pA level)
- Leakage current proportional to pixel size.

IV curves above 120V

HSTD10, Xi'an, 2015-09-27

Breakdown Voltages with Top Biasing

 V(bd): Typically rises with fluence for standard sensors. But seems to be stable with top-side biasing due to voltage drop along finite/small distances between the implants. (Shown for 2e15 neq/cm², but the V(bd) is very similar for 2e15 neq/cm²)

NMOS CHESS1

PMOS CHESS1

RAL, IHEP, SCIPP

Amplifier Gain

Amplifiers on the HVStripV1 chip have been calibrated with different x-ray sources. They show quite linear behavior. The variation with dose is relatively small.

KIT

Module Concept - Barrel

Barrel module

- Interleaved placement on
- two sides of the stave
- o 10 cm width
- Sensors in 'rows' of reticules
- o Single hybrid
 - ✓ 10 ABCn'
 - ✓ HCC'
 - ✓ DC/DC convertor
 - ✓ Mechanical support