High-Speed/Radiation-Hard Optical Links

The Ohio State University

P. Buchholz, S. Heidbrink, M. Vogt, M. Ziolkowski
Universität Siegen

September 28, 2015
Outline

- Introduction
- Opto-pack design
- Opto-board design
- Results from first prototype opto-board
Use of VCSEL Arrays in HEP

- Widely used in off-detector (no radiation) data transmission
- First on-detector implementation in pixel detector of ATLAS
 - experience has been positive
 - use arrays for the second generation opto-links
 - logical for HL-LHC ATLAS pixel detector to use 12-channel arrays as in the 1st and 2nd generation opto-boards
Opto-Links of Pixel Detector

- Built two generations of opto-links for the pixel detector
 - pixel detector initially has 3 barrel layers + 3 disks on each side
 - opto-links built by OSU had ~0.1% broken links
 - added insertable barrel layer (IBL) in 2014
 - move opto-links to more accessible location
 - 300 opto-modules (opto-boards) are needed
 - ~6,000 opto-links
 - fabricated 400 opto-boards
Opto-Board for HL-LHC ATLAS Pixel Detector

- Use experience from building two generations of opto-boards to develop an opto-board capable of operation at 5 Gb/s or higher for HL-LHC ATLAS pixel detector (ITK-Pixel)
- What is required to demonstrate that the opto-board concept is a logical solution?
 - 5 Gb/s per channel VCSEL arrays
 - Radiation-hard VCSEL array driver
 - Robust high speed array based packaging with thermal management
- A working prototype has been constructed
2nd Generation Pixel Opto-Board

- **driver**
- **receiver**
- **VCSEL**
- **PIN**

3 cm
Close Up View

Opto-pack

VDC (VCSEL driver)

DORIC (PIN receiver/decoder)
Opto-Pack

- Use BeO as substrate for heat management
Opto-Pack for ITK-Pixel

- Proposed opto-pack for ITK-Pixel has simpler design
- Experience in building large quantity of opto-packs:
 - Fabricated 1,200 opto-packs for pixel opto-boards
 - Fabricating 280 PIN opto-packs for off-detector opto-receivers
 - Equivalent to 18,000 channels
ITK-Pixel Opto-Board Concept

- Keep opto-pack
- Keep copper backed PCB
- Keep MTP connector
- Compatible with an opto-box (opto crate) concept
- No lenses/mirrors used to turn the light
ITK-Pixel Opto-Board (Version -1)

Connector secured to opto-board with screws instead of epoxy in current opto-board

Could be fabricated as one piece with mold injection

1.5 cm
ITK-Pixel Opto-Board

- Produced a 4-channel opto-board using our array driver ASIC
 - Scalable to 12 channels by simply replacing the ASIC
- Uses a Finisar 12-channel VCSEL array (V850-2174-002)
ITK-Pixel Opto-Board

- runs at 1.2 V
 - with all four channels operating consumes ~150 mA at 5 Gb/s
- cathode set to -1.3 V (~20 mA) to provide enough headroom to drive the VCSEL
- optical power > 2 mW on all channels
- BER < 1 \times 10^{-13} on all channels at 5 Gb/s with every channel active
● use 175 \(\mu \text{m} \) space/trace controlled impedance transmission lines
● successfully transmit 5 Gb/s signals via Samtec LSHM connectors
 \(\Rightarrow \) no need to connect high-speed cables directly to opto-board
 \(\Rightarrow \) connect high-speed cables to “back-plane” inside opto-box
Eye Diagrams at 5 Gb/s

- All channels are active
10 Gb/s VCSEL Array Driver

- R&D funded via CDRD (FY13-15)
- 4-channel test chip submitted in October 2014 (65 nm CMOS)
 - 2 mm x 2 mm
 - Each channel slightly different to explore design choices
- Uses only core transistors to achieve maximum radiation-hardness
- Includes 8-bit DACs to set the VCSEL modulation and bias currents
- DAC settings stored in SEU tolerant registers
Eye Diagram at 10 Gb/s

- Eye diagram at 10 Gb/s is open but improvement is needed
 - Bit error bit: 1.3×10^{-15}
Summary

- high-speed/radiation-hard parallel optical engine
 - successfully designed and prototyped
 for HL-LHC ATLAS Pixel detector
 - include an ASIC and optical packaging
 - satisfactory performance for 5 Gb/s optical data transmission