Diamond Sensors for Future High Energy Experiments

Felix Bachmair on behalf of the RD42 collaboration
The RD42 Collaboration

M. Artuso22, F. Bachmair26, L. Bari26, M. Bartosik3, J. Beacham15, V. Bellini2, V. Belyaev24, B. Bento21, E. Berdermann17, P. Bergonzo13, A. Bes30, J.-M. Brom9, M. Bruzzi5, M. Cerv2, C. Chaui18, G. Chiiodini29, D. Chren20, V. Cindro11, G. Claus39, J. Collot30, S. Costa2, J. Cumalat21, A. Dabrowski3, R. D'Alessandro5, W. de Boer12, B. Dehning3, D. Dobos3, C. Dorfer26, M. Dünser26, V. Eremeev8, R. Eusebi27, G. Forcolin24, J. Forneris17, H. Frais-Köhl4, K.K. Gan15, M. Gaist3, M. Goffe9, J. Goldstein19, A. Golubev10, L. Gonella1, A. Goršek11, L. Graber25, E. Grigoriev10, J. Grosse-Knetter25, B. Gui15, M. Guthoff3, I. Haughton24, D. Hidas16, D. Hits26, M. Hoeferkamp23, T. Hofmann3, J. Hossle9, J.-Y. Hostachy30, F. Hügging1, H. Jansen3, J. Janssen1, H. Kagan15,9, K. Kanxeiri31, G. Kasieczka26, K. Kass15, F. Kassel12, M. Ke7, G. Krämerberger11, S. Kuleshov10, A. Lacost30, S. Lagomarsino5, A. Lo Giudice17, C. Maazouz9, I. Mandic11, C. Mathieu5, N. McFadden23, G. McGoldrick18, M. Menichelli31, M. Mikul22, A. Morozzi31, J. Moss15, R. Mountain22, S. Murphy24, A. O الت24, P. Olivero17, G. Parrini3, D. Passeri31, M. Pauluzzi31, H. Perenegger8, R. Perrino29, F. Piccolo17, M. Pomorski13, R. Polenz3, A. Quadri25, A. Re17, G. Riley28, S. Roe3, M. Sapinski3, M. Scaringella5, S. Schneiter16, T. Schreiner4, S. Sciotino5, A. Scorzon31, S. Seidel23, L. Servoli31, A. Sfyrka5, G. Shimchuk10, D.S. Smith15, B. Sokol20, V. Sokol20, S. Spagnolo29, S. Spanier28, K. Stenson21, R. Stona16, C. Suter2, A. Taylor23, M. Traeger7, D. Tromson13, W. Trischuk18,9, C. Tuve2, L. Ulepger6, J. Velthuis19, N. Venuri18, E. Vittone17, S. Wagner11, R. Wallny26, J.C. Wang22, P. Weilhammer3, J. Weingarten25, C. Weiss3, T. Wengler3, N. Wermes4, M. Yamouni30, M. Zavrtanik11

1 Universities Bonn, Bonn, Germany
2 INFN/University of Catania, Catania, Italy
3 CERN, Geneva, Switzerland
4 FWT, Wiener Neustadt, Austria
5 INFN/University of Florence, Florence, Italy
6 FNAL, Batavia, USA
7 GSI, Darmstadt, Germany
8 Lofe Institute, St. Petersberg, Russia
9 IPHC, Strasbourg, France
10 ITEP, Moscow, Russia
11 Jožef Stefan Institute, Ljubljana, Slovenia
12 Universität Karlsruhe, Karlsruhe, Germany
13 CEA-LIST Technologies Avances, Saclay, France
14 MEPHI Institute, Moscow, Russia
15 The Ohio State University, Columbus, OH, USA
16 Rutgers University, Piscataway, NJ, USA
17 University of Toronto, Toronto, Italy
18 University of Toronto, Toronto, ON, Canada
19 University of Bristol, Bristol, UK
20 Czech Technical Univ., Prague, Czech Republic
21 University of Colorado, Boulder, CO, USA
22 Syracuse University, Syracuse, NY, USA
23 University of New Mexico, Albuquerque, NM, USA
24 University of Manchester, Manchester, UK
25 Universität Göttingen, Göttingen, Germany
26 ETH Zürich, Zürich, Switzerland
27 Texas A&M, College Park Station, TX, USA
28 University of Tennessee, Knoxville, TN, USA
29 INFN-Lecce, Lecce, Italy
30 LPSC-Grenoble, Grenoble, Switzerland
31 INFN-Perugia, Perugia, Italy

129 Participants
Overview

- Diamond as a sensor material
 - Newest developments in chemical vapor deposition (CVD) diamonds
 - Radiation tolerance
- Overview of diamond detectors in HEP
- Latest experiences for
 - CMS PLT pilot run
 - ATLAS DBM
- 3D diamond detectors
 - Single-crystalline (sc)CVD diamond
 - Polycrystalline (p)CVD diamond
Why diamond?

- advantages of diamonds w/r/t silicon
 - large displacement energy
 - large bandgap
 - high thermal conductivity

- there are some disadvantages though
 - Large bandgap
 - Size of diamonds (scCVD)

 - Radiation hard
 - less leakage current & noise
 - less cooling, good heatspread

 - less signal
 - Material more expensive than Si
Diamond Manufacturers

- In the past diamonds via DDL from ElementSix (De Beers)
 - DDL out of business, now directly via ElementSix
- New suppliers
 - IIa-Technologies (scCVD)
 - II-VI Incorporated (pCVD)
- IIa has delivered O(10) samples for evaluation
 - committed their self to
 - Further improvement of material
 - pCVD growth
- II-VI improved quality of pCVD over the last years
 - Delivered growing number of final finished parts to CMS and ATLAS
 - Now typically deliver 275 - 300 µm collection distance
Radiation Hardness

- 24 GeV protons
- $k_\lambda = 0.62 \pm 0.07 \times 10^{-18} \mu m^{-1} cm^{-2}$
- Polycrystalline diamond sample offset by $\Phi \sim 5 \times 10^{15}$ to account for existing traps.
- Poly and single crystal diamond show consistent damage constants.

$$\lambda_{e/h} (\Phi) = \frac{\lambda_0}{1 + \lambda_0 \cdot k \cdot \Phi}$$

$e/h (\Phi) = 1+ \frac{\lambda_0}{k \Phi}$

Radiation Hardness

- 24 GeV protons
- $k_\lambda = 0.62 \pm 0.07 \times 10^{-18}$ μm$^{-1}$cm$^{-2}$
- Polycrystalline diamond sample offset by $\Phi \sim 5 \times 10^{15}$ to account for existing traps.
- Poly and single crystal diamond show consistent damage constants.

More high energy diamond experiments

- **CMS:**
 - BCM1F: for online background and luminosity measurements
 - 24 scCVD diamond sensors, 48 Channels
 - Fast MIP counter, trigger-less readout
 - BCM1L/BCM2L: Beam abort system
 - Based pCVD diamond sensors

- **ATLAS:**
 - BCM:
 - 4 x 2 pCVD diamonds on each side
 - Single particle counting with $\sigma = 0.7\text{ns}$.
CMS Pixel Luminosity Telescope (PLT)

- High precision bunch-by-bunch luminosity measurement with an array of eight 3-plane telescopes
 - Pilot Run: Diamond sensors
 - Final Installation: Silicon sensors
- Pilot Run while LHC Run 1 in Castor region: 14.5m from IP
 - Total exposure 20fb$^{-1}$
 - 5×10^{13} n/cm2 and 5×10^{13} charged hadrons/cm2
- In the Pilot Run:
 - Strong rate dependency for this diamonds after a small amount of irradiation
- Major effort was started to understand this issue
PSI beam test campaign

- Multiple beam tests at PSI
- Compact Si telescope based on CMS pixel chip PSI46v2
 - Scalable trigger size
 - Readout of pad detectors with Amplifier + DRS4 Evaluation board
- Testing pCVD and scCVD
 - irradiated/non-irradiated/ Pilot Run
 - Pad detectors:
 - Quick detector fabrication and turn around
 - study sensors w/o threshold effect
 - Pixel detectors:
 - Study effects of pixel threshold
 - Study effects of pixel charge sharing

<table>
<thead>
<tr>
<th>PSI</th>
<th>Paul Scherrer Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamline</td>
<td>HIPA/PiM1</td>
</tr>
<tr>
<td>Beam Energy</td>
<td>250 MeV/c</td>
</tr>
<tr>
<td>Particles</td>
<td>Mostly pi⁺</td>
</tr>
<tr>
<td>Flux</td>
<td>O(1kHz/cm²) – O(10 MHz/cm²)</td>
</tr>
</tbody>
</table>
Pixel Results for rate studies

- Testing irradiated scCVD pixel detector
 - Using PSI46v2 readout chip
 - 5x10^{13} \text{n/cm}^2 and 5x10^{13} \text{charged hadrons/cm}^2 (PLT pilot run diamond)

- 50% drop in charge with flux
- Similar effect as seen in PLT pilot run
PAD Results for rate studies

- scCVD unirradiated and pCVD irradiated show less than few % signal variation up to O(MHz/cm²)
- scCVD irradiated with neutrons and in CMS (PLT pilot run 2012) show similar behavior:
 - ~10% drop in signal at flux > 100 kHz/cm²
- pCVD does not show a rate effect
Rate dependency summary

- Also tested irradiated/unirradiated scCVD diamonds from IIa Technology
 - Seems to show less rate dependence than E6 diamonds
- Investigation of rate dependencies is continuing with an improved readout system with
 - Faster amplifiers for PAD readout
 - Lower threshold ROC for Pixel measurements
 - Longer data taking capabilities
- Up to now:
 - **No rate dependence for pCVD diamonds** irradiated with 5×10^{13} neutrons/cm2 up to 2 MHz/cm2
 - Rate dependence seems to be a growth dependent
Effect of surface treatment on a leakage current
Lessons learned – leakage current

- Observed large erratic currents for several diamonds
 - This diamonds could not hold high bias fields
 - Some scCVD diamonds were not collecting full charge @ 1V/µm
 - Different results for positive and negative polarity

Can’t go above 700V
Lesson learned – leakage current

- Surface treatment with reactive ion etching (RIE)
 - Fixing HV problems
 - More stable currents
 - Higher voltages/electric fields
 - More symmetric charge collection
 - Improving charge collection

Can go to 1000V
ATLAS Diamond Beam Monitor (DBM)

- **Purpose:**
 - Bunch-by-bunch luminosity monitor (aim <1% per BC per LB)
 - Bunch-by-bunch beam spot monitor
 - Pixelated sensors allow (limited) tracking to distinguish collision tracks from beam halo

- **Design:**
 - 4 telescope of three FE-I4 modules at $\eta \approx 3.2$ per side \Rightarrow 24 modules
 - On each side
 - 3 diamond telescopes with diamonds from 2 suppliers (E6 & II-VI) bump bonded at IZM
 - 1 silicon telescope
DBM status

- Powered since early February for ATLAS cosmic/commissioning runs
 - Included in ATLAS central data-taking since mid of February
- Sensors biased at
 - 50 V (silicon telescopes)
 - 500 V (diamond telescopes)
- Thresholds tuned to 2500e for diamond
 - Plan to tune to 1500e
- New experiences with
 - bump bonding
 - Installation
Experience DBM Bump Bonding
Lessons learned – Bump bonding issues

- FE-I4 – Biggest Pixel chip ever bump bonded to a diamond
 - 26880 pixels with an active area of 341 mm2
- Bump bonding of diamonds in four batches
 - Batch 1 & 4: Similar bump bond efficiencies as for silicon
 - Batch 2 & 3: Low bump bond efficiencies
Lessons learned – Bump bonding issues

- FE-I4 – Biggest Pixel chip ever bump bonded to a diamond
 - 26880 pixels with an active area of 341 mm2
- Bump bonding of diamonds in four batches
 - Batch 1 & 4: Similar bump bond efficiencies as for silicon
 - Batch 2 & 3: Low bump bond efficiencies

- Issues related to the persons and machines used for bonding the chips
- Able to bump bond FEI-4 readout chips to diamond with similar efficiencies as to silicon
Experience DBM Installation
Lesson learned – installation issues

- ‘Lost’ 3 DBM modules in 2 telescopes during operation
 - 1 diamond module
 - 2 Si modules

- Left modules in an unconfigured state
- Probably wire bonds broke due to high currents and magnetic field

- Investigation is in progress but definitely not a sensor related issue
3D diamond detectors
3D diamond detectors

- 3D geometry to shorten the drift distances

- For 3D geometry using a femto second laser (100fs) with a wavelength of 800 nm
 - phase change of diamond into a combination of diamond-like carbon, amorphous carbon and graphite

- Sizes:
 - Planar strip pitch 50 µm
 - 3D Cell size: 150 x 150 µm²

- Optical and resistivity measurements show a yield for micromachining columns of ~ 90 %

Supported by
US DoE Grant DE-SC0010061,
ETH Grant 45 12-1,
Swiss NF Grant #20FL20_147466,
Royal Society Grant UF120106.
3D diamond detectors

- 3 different regions on one diamond for comparison
 - Planar strip @ 500V, pitch 50 µm
 - 3D phantom @ 25V, size 150 x 150 µm²
 - 3D detector @ 25V, size 150 x 150 µm²
- Missing charge around ~9 broken readout columns
 - In agreement with other measurements
- See effects of missing bias columns
3D diamond detectors

- 3 different regions on one diamond for comparison
 - Planar strip @ 500V, pitch 50 µm
 - 3D phantom @ 25V, size 150 x 150 µm
 - 3D detector @ 25V, size 150 x 150 µm

- Missing charge around ~9 broken readout columns
- In agreement with other measurements
- See effects of missing bias columns
3D diamond detectors

- 3 different regions on one diamond for comparison
 - Planar strip @ 500V, pitch 50 µm
 - 3D phantom @ 25V, size 150 x 150 µm²
 - 3D detector @ 25V, size 150 x 150 µm²
- Missing charge around ~9 broken readout columns
 - In agreement with other measurements
- See effects of missing bias columns
3D diamond detectors

- 3 different regions on one diamond for comparison
 - Planar strip @ 500V, pitch 50 µm
 - 3D phantom @ 25V, size 150 x 150 µm²
 - 3D detector @ 25V, size 150 x 150 µm²
- Missing charge around ~9 broken readout columns
 - In agreement with other measurements
- See effects of missing bias columns
3D diamond detectors

- 3 different regions on one diamond for comparison
 - Planar strip @ 500V, pitch 50 µm
 - 3D phantom @ 25V, size 150 x 150 µm²
 - 3D detector @ 25V, size 150 x 150 µm²
- Missing charge around ~9 broken readout columns
 - In agreement with other measurements
- See effects of missing bias columns
3D diamond detectors

- Remarkable agreement between signal in 3D and planar strip geometry for a good cell region
- Full charge at lower avrg. E Field
3D pCVD diamond detectors

- 3D pCVD diamond has been tested in beam tests at CERN this summer
- Same layout/mask as for 3D scCVD diamond with Planar Strip/3D-Phantom/3D-Detector
 - Smaller yield in fabrication of columns than for scCVD
 - Smaller yield in contacting the columns with the metallization than for scCVD
- Preliminary result without calibration to electrons
 - 3D-Detector & 3D-Phantom biased @ 75V, planar strip @ 500V
 - Comparison between 3D detector and planar strip
 - Looking at single working cells
Poly 3D

- Red line: estimate for MP of full charge collection (500 µm)
- Collecting more charge than planar strip detector
- ~ 77% of Full charge collection @ 75V
- Highest charge collection ever measured for pCVD diamonds
Summary

- New diamond suppliers, IIa & II-VI, improved situation on the market
- Quality of diamonds has improved strongly over the last years
 - Now reaching 275 - 300 µm CD in pCVD diamonds
- New experiences in using diamonds on bigger scales in CMS PLT Pilot Run and Atlas DBM
 - Most problems has been understood and solved
- Rate dependency still under study,
 - seems to be growth dependent
 - We did not observed a rate dependence for pCVD diamonds
- 3D diamond detectors show a great promise
 - 3D pCVD shows 2.5x the charge of a planar pCVD strip detector at 75V.
Outlook

- Further improvement of diamond quality in cooperation with suppliers
- Continue Rate studies with improved setup
 - Faster amplifiers for PAD readout
 - Lower threshold ROC for Pixel measurements
 - Longer data taking capabilities
- Working on thinner diamond detectors
- R&D for HL-LHC: innermost layer of Tracker
- R&D on 3D devices
 - Improve fabrication of 3D device
 - Higher yield
 - Bigger detectors
 - Test different structures
 - Studies of irradiated 3D CVD diamonds
 - Measure 3D pCVD at higher bias voltages.