

History and Current Status of Hamamatsu Si detectors for High Energy Physics Experiment

K.Yamamura*, S.Kamada , K.Yamamoto

HAMAMATSU PHOTONICS K.K.

September 2015 HAMAMATSU PHOTONICS K.K. Solid State Division

1

<u>Outline</u>

- 1. Development and production history of Hamamatsu SSD (Silicon Strip Detector)
- 2. Our technology for SSD
- 3. SSD and APD(Avalanche Photo Diode) for LHC
- 4. Development and characteristic of MPPC[®] (Multi Pixel Photon Counter)
- 5. MPPC[®] for HEP application

Hamamatsu Si detectors for HEP

Direct detector

Silicon Strip Detector(SSD) Silicon Pixel Detector

Photo detector

Silicon Photo Diode(PD) Silicon Avalanche Diode(APD) Multi Pixel Photon Counter(MPPC®)

Development and Production History of SSDs at Hamamatsu

Review of main SSDs made by Hamamatsu (~1999)

PROJECT	DETECTOR TYPE	size	QTY.	period
MARK	DC-SSSD 3type	3chip/4inch	44	1987
CLEO II	AC-DSSD 3type Pside: punch-through, Nside: poly-Si & DML	1 chip/4inch 2 chip/4inch	122	1993~1994
DELPHI	AC-DSSD 2type both-side: poly-Si, Nside: DML	2chip/4inch	130	1993~1994
DELPHI up grade	AC-SSSD , FOXFET	2chip/4inch	330	1994
NOMAD	AC-SSSD , FOXFET	2chip/4inch	650	1996~1997
CLEOI	DC-DSSD, Pside: DML	2chip/4inch	550	1997~1999
CDF-SVX	AC-DSSD 3type both-side: poly-Si, Nside: DML	1 chip/4inch 2 chip/4inch	360	1997~1999
CDF-ISL	AC-DSSD both-side: poly-Si , Pside: stereo	1chip/4inch	550	1998~1999
PAMELA	AC-DSSD Pside: punch-through , Nside: poly-Si & DML	2chip/4inch	60	1997
KEK-B(BELLE)	AC-DSSD both-side: poly-Si, Nside: DML	2chip/4inch	180	1998
ZEUS	AC-SSSD 3type, poly-Si	1chip/4inch	950	1999

Review of main SSDs made by Hamamatsu (2000~)

PROJECT	DETECTOR TYPE	size	QTY.	period
AGILE	AC-SSSD , poly-Si	1chip/6inch	500	2000
PAMELA	DC-SSSD	1chip/6inch	300	2000
BELLE up grade	AC-DSSD , both-side: poly-Si	2chip/4inch	250	2000~2002
ATLAS	AC-SSSD 6type , poly-Si	1chip/4inch	15500	2001~2003
GLAST	AC-SSSD , poly-Si	1chip/6inch	11500	2001~2003
CMS	AC-SSSD 14type , poly-Si	1chip/6inch	24000	2003~2006
LHC-b	AC-SSSD , poly-Si	1chip/6inch	560	2005~2006
ALICE	AC-SSSD 2type , poly-Si	1chip/6inch	106	2005~2006
Phenix	Strippixel, DML	3chip/6inch	600	2007
PP2PP	AC-SSSD 2type , poly-Si	1chip/6inch	120	2003~2007
FVTX	AC-SSSD 2type , poly-Si	3chip/6inch	450	2009~2010
ASTRO-H	DC-DSSD, DC-PAD, Pside: DML	3chip/6inch	260	2007~2011
STAR-HFT	AC-SSSD , poly-Si	2chip/6inch	216	2012
HALL-B	AC-SSSD(stereo) 3type , poly-Si	1chip/6inch	434	2012
BELLE-II	AC-DSSD , 2type , Poly-Si	1chip/6inch	265	2011~2014
DAMPE	AC-SSSD , poly-Si	1chip/6inch	768	2014

- 1. Development and production history of Hamamatsu SSD (Silicon Strip Detector)
- 2. Our technology for SSDs
- 3. SSD and APD(Avalanche Photo Diode) for LHC
- 4. Development and characteristic of MPPC[®] (Multi Pixel Photon Counter)
- **5.** MPPC[®] for HEP application

7

Design of Photo masks

CAD soft on PC is mainly used for Si detectors. Each coordinates of figures can be inputted by macro program made by EXCEL etc.

Photo-mask design of complicated shape like any angle or rounded strips pattern are acceptable.

Wafer process

Nearly 10,000 of 6 inch wafers are processed per month. We have process lines for PD, Bipolar photo IC, CCD, C-MOS and MEMS Devices

For SSDs

2,000 wafers per month were processed for LHC mass production. Available type : SSSD or DSSD, AC or DC-coupling, Double-metal Available thickness : 150 to 650um for SSSD,

320 and 500um for DSSD

- Oxidation
- Photolithography
- Ion Implantation
- Poly-Si process
- Metal Evaporation
- Passivation

Copyright C Hamamatsu Photonics K.K. All Rights Reserved.

Wafer probing

Example of Probing for SSDs

1) Lot check using TEG

- implant resistance
- poly-Si resistance
- Flat-band voltage
- capacitance of Cc
- IV & CV of Monitor PD
- 2) IV curve of main chips

Chose good wafers

3) Put chip serial number

Binary notation at Scratch PADs on chip

Dicing)

- 4) AC & DC check of strips
- 5) IV & CV curve of main chips

Double sided Wafer probing

Restriction

- 1) Wafer shape
- 2) Larger than 80um pad size

Example of Probing

- 1) DC check of N strips for DSSD
 - require P side biasing
- 2) TSV-MPPC with back side PADs
 - require front side illumination

Stealth Dicing Technology

We also have Stealth dicer in addition to the traditional blade dicer. Polygon shape, chips of different size can be cut without chipping

Failure Analysis

< Phemos system >

- Easy to know where is weak points and lower break down voltage
 - Design of photomask mainly for guard rings and edge of stripes
 - Analysis of popcorn noise by micro plasma
 - Contamination and defects analysis made by process and handling

- 1. Development and production history of Hamamatsu SSD (Silicon Strip Detector)
- 2. Our technology for SSDs

3. SSD and APD(Avalanche Photo Diode) for LHC

Development and characteristic of MPPC[®] (Multi Pixel Photon Counter) MPPC[®] for HEP application

ATLAS - SSD

ATLAS-SSD (S8536 series)

<u>CMS - SSD</u>

Kazuhisa. Yamamura / 2015/09/25-29 10th HSTD @ Xi'an, China

Copyright C Hamamatsu Photonics K.K. All Rights Reserved. 17

CMS-Si tracker and SSD

Vfd and Leakage current for CMS-thick type SSDs

Vfd distribution is due to the resistance variation of the wafer material. Dark current distribution is good and much less than specification.

Bad channel rate for CMS-SSDs

More than 95% of detector are perfect with no bad channels.

The average of bad channel rate is around 0.01%.

Short of Cc, Open of strip implant, short of AC AL are main factor of bad channel.

CMS - APD

Kazuhisa. Yamamura / 2015/09/25-29 10th HSTD @ Xi'an, China

Copyright © Hamamatsu Photonics K.K. All Rights Reserved. 21

Characteristics required for the CMS-APD

- 1. Development and production history of Hamamatsu SSD (Silicon Strip Detector)
- 2. Our technology for SSDs
- 3. SSD and APD(Avalanche Photo Diode) for LHC
- Development and characteristic of MPPC[®] (Multi Pixel Photon Counter)
 MPPC[®] for HEP application

MPPC[®] Technology Overview

\rightarrow What is an MPPC[®]?

- <u>Multi-Pixel</u> Photon <u>Counter</u> a new type of photon-counting device made up of multiple APD pixels operated in Geiger mode

≻Features

- Small size / light weight
- Room temperature operation
- Low bias operation : ~70V
- High gain: 10^5 to 10^6
- Excellent timing resolution
- Insensitive to magnetic fields

Latest Development of MPPC®s

Low After Pulses

After pulse probability has been suppressed by optimization of structure and material. All new MPPC[®] series have very lower after pulses compared with conventional type.

Crosstalk Suppression by Trench isolation

Top view of pixel Cross section of trench Low cross talk series each MPPC[®] micro cell is surrounded by an optical trench isolation. It prevents penetration of generated secondary photons to neighboring micro cells.

Copyright C Hamamatsu Photonics K.K. All Rights Reserved. 27

Crosstalk comparison

and it can be used at higher overvoltage

Pulse height distribution comparison

As generation increases, pulse height distribution is improved. Third generation is excellent photon-counting capability

Dynamic range of MPPC®

MPPC[®] maximum output is determined by;

- Large number of MPPC[®] pixels
- Short recovery time

Merit and Demerit of small pixel

Merit⇒ Large number of pixels , Short recovery time Demerit⇒ Small fill factor, Low PDE

Dynamic range by readout method of MPPC®

Photosensitive area : 3x3mm

Dynamic range by readout method of MPPC®

Photosensitive area : 3x3mm

MPPC[®] array with TSV(Through Si Via)

S11828 series

S13361-3050 series

3x3mm Single 50mmp with TSV

The TSV process requires small nonsensitive area (200mm sq.).

This area is corresponding to 0.44% of total active area, and it is hardly affected to the PDE (photon detection efficiency).

Cross section of TSV

Copyright C Hamamatsu Photonics K.K. All Rights Reserved. 33

- 1. Development and production history of Hamamatsu SSD (Silicon Strip Detector)
- 2. Our technology for SSDs
- 3. SSD and APD(Avalanche Photo Diode) for LHC
- 4. Development and characteristic of MPPC[®] (Multi Pixel Photon Counter)
- 5. MPPC[®] for HEP application

Characteristics of MPPC and PMT

	MPPC	PMT
GAIN	10 ⁵ ~10 ⁶	10 ⁵ ∼10 ⁷
Operation Voltage	60~80	~1000
Active area	10 mm ²	≧10000 mm²
Dark count	Δ	Ø
Detection effi.	Ø	0
Timing reso.	Ø	0
Energy reso.	0	0
Compact	Ø	0
Magnetic resist.	© (7 T)	× (1.5 T)

MPPC® for T2K Experiment (2008)

Kazuhisa. Yamamura / 2015/09/25-29 10th HSTD @ Xi'an, China

Copyright C Hamamatsu Photonics K.K. All Rights Reserved. 36

MPPC® for LHCb SciFi Tracker

MPPC® for MEG Upgrade

MEG experiment : searching for $\mu + \rightarrow e + + \gamma$ decay Liquid xenon γ -ray detector will be upgraded 2" PMT \rightarrow MPPC[®] for VUV (175nm) total 4,000pcs.

Kazuhisa. Yamamura / 2015/09/25-29 10th HSTD @ Xi'an, China

Copyright C Hamamatsu Photonics K.K. All Rights Reserved. 39

(Pictures from Tokyo University)

Summary

- 1. The history of Hamamatsu SSD is more than 30 years, and SSDs have been used for many HEP experiments.
- 2. We have enough capability to design, process, and inspection of Si detectors for HEP.
- 3. We have developed and delivered SSDs and APDs for LHC-ATLAS and CMS experiment.
- 4. MPPC[®] characteristics for example after-pulses, cross-talk, pulse height distribution and dynamic range have been improved.
- T2K experiment adopted MPPC[®]s and is using 56,000 pieces of 1.3x1.3mm-MPPCs. MPPC[®] will be expected and evaluated for HEP experiments.

Closing

We Hamamatsu are proud that our Si-detectors are used

for many physical experiments.

We continually make efforts to provide a better sensor, and contributes to the development of physics.

Photo of Ichino factory with beautiful cherry blossom

Awards received from the LHC experimental groups

Thank you for your attention !

jp.hamamatsu.com